AD=A092 180 NAVAL POSTGRADUATE SCHOOL MONTEREY CA 6 9/2
DESISN AND IMPLEMENTATION OF AN INTEGRATED SCREEN=ORIENTEOQ TEXT--ETCU
JUN 80 L A TALMAGE

UNCLASSIFIED

Josu s
. 5o 3.2
——— 'é: !; “m%
i - =
ke =

B
=
B

2R

L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

’ /
.

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

Frad

& SIS N

v
Q
<
N .. o
e ROV EG 860 0 @
E%}ﬁ a
THESIS “-
A
DESIGN AND IMPLEMENTATION OF AN
INTEGRATED SCREEN-ORIENTED TEXT EDITING
AND FORMATTIMG SYSTEM
by
Lisa Anne Talmage
June 1980
Thesis Advisor: F. Burkhead
K Approved for public release; distribution unlimited

8011 24 V77

SECUMTY CLASMPICATION OF TWIS #AGE Mhan Dese Bntered)

4. VITLE (and Subtitle) o .
Design and Implementation of an Inte- 9{lMaster's fhesis
b | grated Screen-Oriented Text Editing and

REPORT DOCUMENTATION PAGE L T T H
A AT QA K
) oveneo

P

71 Formatting System, . A 6. PERPOMMING ORG. REFORT NUMBER
] NORf o) 4
'QD;Lisa Anne}Talmage
¢ A
IS, CERFORMING ORGANIZATION NAME AND ADDRESS AW NT PROIECT. v aK

Naval Postgraduate School V
Monterey, California 93940

1t CONTROLLING OFFICE NAME AND ADDRESS -
Naval Postgraduate School ‘\WF
Monterey, California 93940 43,

Sy e S
. MONITORING AGENCY MAME & AQORESS/I! Miiferant frem Centroliing Otfice) 15, SECUMTY CLASS. (of this ripert)

Naval Postgraduate School : g3

Monterey, California 93940 Unclassified
W.Wma_

76, OISTMIBUTI1ON STATEMENT (of thia Nepert)

Approved for public release; distribution unlimited

17. OI1STRIBUTION STATENENT (of the saatract anteved in Dloek 30, §! Mitiorent lram Repert)

Approved for public release; distribution unlimited

M———
8. SUPPLENENTARY NOTES

19. XEY WORDS /Conti on reverse side I and idontify by Dlock number)
te¥t processor, formatter, editor, screen-oriented,

| £ TRACY (C o reveves oide I sy and ideniify by blesk mumber)
Text editors and text formatters/processors are described.

The state-of-the-art in text processing is examined. Design

and implementation considerations in developing an interactive,

integrated, screen-oriented text editing and formatting

system are discussed. A Berkeley PASCAL implementation of such

a system for a PDP-1l minicomputer under the UNIX timesharing

system is presented. Intended system users are non-computer \

[»] .52.'."'1. 1473 toimon oF 1 wov et 18 OBsOLETR 07 f?m i

‘pa‘e) §/n 0102°014° 4001 - 1 SECUMITY CLABSIFICATION OF THIS PAS

L e

SucumMTY CLASSIPICATION OF THIS PAGE(When Dote Entored.

\block number 20.

‘J/scientists r €.9.
| students, etc.

utilize the system.

secretaries, business executives, engineers,
Programming experience is not required to

)

. . e e e e n .
. Siavm Ta-)/ !
. . .
v s
i

orm 1473
s/ »} 50'1'6'4.‘-014-6601

SECUMTY CLASSIFICATION OF THiS PAGE(When Date Bntered)

T . AL A s I b

Approved for public release; distribution unlimited.

DESIGN AND IMPLEMENTATION
OF AN INTEGRATED SCREEN-ORIENTED
TEXT EDITING AND FORMATTING SYSTEM

by

Lisa Anne Talmage
Captain, United States Marine Corps
B.S., William Woods College, 1975

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1980

]
Author é& / a/n.én_w
. [/
Approved by: 'U-'g"”” :{:4 7 ~—/

//@% 1 Thesis Advisor
v/

v Second Reader

'
B AT o T A vy gy it OB T A

ABSTRACT

Text editors and text ?ormatters/orocessors are
described. The state-of=the=art in text processing is

examined, Design and implementation considerations in

developina an interactive, integrated, screen-oriented text

editing and formatting system are discussed. A Berkeley

PASCAL imolementation of such a system for a POP=11 mini=

1 computer under the UNIX timesharing svystem is presented.
Intended system uysers are non-comouter scientists, e.g.

’f secretaries, business executives, engineers, students, etc.

| Proaramming experience is not required to utilize the

system,

R L T - e v ——— o e i e~

? |
¢ |
H TABLE OF CONTENTS i
‘; I. INTRODUCTION, o « ¢ o o o o o s o o o o o o o o 1 {
' A, THESIS OBJECTIVE. o v v o o o o o o o o o o T
B, TEXT EDITOR DEFINITION, o « o« « o o o =« » « 8
1. Line-Oriented EditOors « « o ¢« ¢ o« o o« o 9 L
2. Context=0Oriented Editors. « « « « o o « 10
C. TEXT FORMATTYER DEFINITION . o « o« o o o « o 11
I1. TEXT PROCESSIMG SURVEY. &« ¢ o« o o o ¢ o o o o o 14 :
A, COMMERCIAL TEXT PRUCESSING. o« « o« ¢ ¢ « o o 14
B. COMMERCIAL TRENDS . ¢ o o ¢« o o o o o o o o 17 !
C. EXISTING MPS TEXT EDITORS AND FORMATTERS. . 18
Do CONCLUSIONS o o o ¢ ¢ o o o o ¢ o o s o o o 21
ITI. DESIGN METHODNLOGY: o o o o o o o o s o o o s o 23
A, PRODUCT DEFINITIOM, o & o o o o« o o » o o o 23
B, DESTIGN GOALS.: « o« <« o o o o o o ¢ ¢ o o o o 28
C. THE DESIGN PROCESS.: o « o o o o o o o s » o« 29
l Terminal Characteristics. « « « ¢« « o« « 30
2. SCOPE Features. . « « o ¢ ¢« o o o o « » 31
a. File Handling o« ¢« o o o o o o o o o 32
b. Screen=0rientation. « « o« » ¢ « « « 32

£ c. System=User Communications. « « « « 34
de Error Handling and Recovery « « « « 35 ;

[XY Ed"iﬂg e o @ ® ® o ® o ° o s o * @ 36

t. FOrmatting. o o o o o o o o o o » o 39

De TESTING o v o o o o o o o o o
E. DESIGN APPRAISAL. o o+ o o o . .
TV. [IMPLEMENTATION. o o v o o « o o o .
A. PROGRAMMING LANGUAGE SELECTION.
B. PROGRAM LOGTC AND STRUCTURE . .
C. DATA STRUCTURES &+ o o o o o o o
D. INPUT/QUTPUT HANDLING
E. THE SCOPE SYSTEM. o . . . « . .
Fe COMMAND STRUCTURE v o o o o o o
G. CURSOR MQVEMENT AND MAPPING , .
He EDITe o v o o o o o o o o o o
I. FORMAT. & v v o o o o o o o o &
Joe WRITE RAW FILE. ¢« ¢ o« o o o o &«
K. LIST PROCESSEM FILE
L. SCREEN DISPLAY VICE LISTING . .
V. FOLLOW=ON WORK AND ENHANCEMENTS .,
VI. CONCLUSTONS o « « o o o o o o « o &
APPENDIX & == FIGURES o o o o « o o o &
APPENDIX 8 == SCUPE PROGRAM LISTING . .
LIST OF REFERENCES. v o o o « o o o o &

INITIAL DISTRIBUTION LIST . & 4 o o« o @

SRS G WL MG i e AW A A BT e = ¢ i v

. 45

« 46

« 53
« 56
. 58
« 59
. 60

.« 61

« 152

« 154

B e ————— . B T pu .. .-

T. INTRODUCTION

A, THESIS OBJECTIVE

Most existing text editors and formatters currently
available are deficient for various reasons. Soecifically,
most text editors are line-oriented, many formatters are
non=interactive, and few editors and formatters are
inteqrated into a single system, For these reasons, the
design of a "better” text orocessing system was undertaken
to demonstrate the feasibility and utility of such a
comnprehensive system, Toward this end, a survey of the
current state-of-the=art in text orocessing was carried
out, Based on this research, the design of a "better" text
processina system is oresented.

This system is an interactive, inteqgrated, screen-
oriented, context-oriented text processing system
consisting of both a text editor and formatter. Tt is
designed to be easy=-to~learn, easy=-to-use, easy=to-enhance,
and easy=to-maintain. Intended system users are non=
computer Scientists, e.q. sSecretaries, business executives,
engineers, students, etc., who mav or may not have
proaramming experience. This svstem has been designed to
aid in the oreparation of documents and/or orograms. The
system has been imolemented on existing Naval Postgraduate

Schoo! (NPS) hardware using available software.

PR T AR LA A

o
"

Four features characterize this system, First, it is

fully inteqgrated in that the text editor and formatter are
not separate entities but comolementary parts of a single
program. Secondly, this system is interactive and provides
the user with immediate feedback. Third, it is screen or
disolay~oriented. A visual disolay, on a cathode ray tube
(CRT)=eauipped terminal, serves to provide both the editing
and formattina feedback. The screen=orientation eliminates
the need for many hardcooy orintouts as the screen
depiction is exactly how the final, finished product will
appear, Finally, manioulatiin of the text through the
screen window for perusal and modification is context=

oriented.

B. TEXT EDITOR DEFINITION

Atthough the term "text editor" is widely used, it is
necessary to clearly define its meaning here. 1In general,
an editor is an interactive comouter program that allows
the user to create and modify a text file. This file is
simoly a sequence of character data. An editor is used to
write documents such as term papers, theses, letters, etc.,
and oroarams., The text editor performs the following
tasks:

- provides access to the text stream from both file

storage and terminal inout,
= adds text to the text file,

= distinguishes between words and soaces to solit

and build lines of text, and
= alters the text at a aiven location based on

user specifications.

Text editors are widely used hecause corrections and
modifications to the text file are easily made as ooocosed
to re-entering a complete uodated version of the text.

Most editors provide functions to insert, delete, copy.,
move, scan and substitute text within the text file. A

text editor also provides facilities to manipulate the text

]
file so that it may be created, destroyed, saved or

updated, Displayino and/or printing out the text is easily

accomolished. In addition, the user is able to locate a

particular location, anywhere in the file, in several

different ways. The user can scan through the disolayed

text by movina the cursor, by reaquesting the display of

specified lines or by initiatinq a context search in which

the editor attempts to match a specified sequence or

pattern of characters,

There are two distinct types of text editors that

impact uoon this project. The first category is line=

oriented and the second is context=oriented. These

categories are described in the following paraqraphs.

1. Line~Oriented Editors

Line~oriented editors are those in which the text is

logically divided into lines. A line is a character

seauence that is delimited within the file by a soecial
line marker at its beginning or end. Lines should not be !
confused with sentences, This type of editor is
aistinguished by the assiqnment of either a permanent or a
relative line number to each and every line of text, These
line numbers serve as user reference points. Editor
commands include line numbers to indicate where the desired
action is to occur. The major advantage of line-oriented
editors is their ability to be used on both CRT and
hardcopy terminals and their tolerance of a slow
communication rate. In addition, many secretaries and
typists feel that a ohysical line is the most logical and
reasonable entity to manipulate while editing, Two other
factors that sell line-oriented editors are the disruption
of touch-typing habits on key-defined function editors and
the comoletely context=free overation of character-oriented
editors,

2. Context=Oriented Editors '

Context-oriented editors are so termed because there
are no associated line numbers for reference purposes,
Instead the text file is referenced relative to the
existing text by specifying a particular marker or sequence i
of characters in a context search, or by the use of
absolute x=y addressing if available on the CRT terminal,

These files are usually divided into pages which may or may

not be further broken down into lines, Context editors are

10

PR

L2 i M B
pron

not. generally implemented on hardcopy terminals or CRT

; terminals with a3 low baud rate because too much time

| elaoses while the page of text is printed out or displayed.
C. TEXT FORMATTER DEFINITION

A text formatter or orocessor is a computer proqgram

which allows the user to manipulate the text file to
produce a specified output format., Formatters are used in
document oreparation. The processor keeps track of the
page format as defined by the page margins, number of lines
per page, and line spacina specifications which are all
subject to chanae. It orovides page numbering,
indentation, headinos and footers, and an underlining
capabilitv. A typical text formatter, (S5, 7, 101,

performs the following tasks:

- accesses the text file from storage,

- distinguishes between format commands and text,

- provides reasonable and general default format
soecifications, .

- redefines the format specifications as directea
by the user,

- splits and concatenates lines of the original
text file to oproduce lines conforming to the
output specifications,

= fills text by putina as many words as possible

within a line,

11

3,
>

i s Hiuan £ AT

: = outputs blank lines or skios lines,
! = provides for paae ejects or skips to the too of
a new page, i
- outouts irregular, non=filled lines of text,
e.g. titles, when directed by the user, and
= allows the line to be centered, right=justified

(aligned aloang the right margin), or underlined.

Text formatters allow drastic format changes to be
accomnlished by the user to improve the document's final i
aopearance and thus its readability.

Many text processors adjust the lines of text which
means the line is both filled and right=justified by
inserting extra blanks within the line. Soohisticated
formatters, in addition to the previously mentioned
features, may provide soelling checks, hyphenation,
footnote oroduction and generation of a table of contents i
or indices, Text orocessors may or may not be interactive,
Non-interactive formatters require the user to visualize
the effect of the format command and later verify the
desired result by printing out a hardcooy listing of the
document., JInteractive formatters do mot require this
mental transformation and verification orocess by the user
because the command result is immediately aoparent.

Before oroceeding on to the survey of text orocessing,

it is aoorooriate to define a text orocessing capability.

12

Systems possessina a text processing capability are able to

perform the previously mentioned tasks of both an editor

i and formatter, For the purposes of this thesis, word

processina and text processing are Synonymous.

13

It. TEXT PROCESSING SURVEY

The initial steo in this thesis was to survey the
current state-of-the=art in text processing. In this
survev, the commercial marketolace was reviewed. In
addition, ten existinag NPS text editors and processors were
observed. The survey goal was to determine the most

desirable features of a text orocessing system.

A. COMMERCTAL TEXT PROCESSTING |
Although text orocessing has been around since the l

mid=sixties at academic and research institutions, it was

not until the mid-seventies that it became commercially
attractive. The technoloaical advances of the early and
mid=seventies brought about a rapid decrease in both
comouter size and price. These factors made them very
attractive to perform a variety of tasks, particularly text
processing, in an automated office. FORTUNE's "Trends in
Comouting-=Applications for the 80's" (20], describes
automation's imoact in this manner, "In the white collar
tactory, the office, the computer and its microorocessor=
based offspring are inciting a revolution of epic
orooortions with word and text processing...." Comouter
vendors of both hardware and software are scrambling to
establish themselves in the emerging office automation

market, The following examoles of this scramble were cited

14

in the FORTUNE article [(20). Data Genera)l has added text

processing to the commercial capabilities of its Eclipse
Computers, Wanaq has aiven all of its VS computers a text
processing capability through "mailword"”. Germany's
Nixdorf disclosed a second generation of distributed data
systems that oerform text orocessing, batch and interactive
communications, data entry, and local file and data base
processina. Nunn, in COMPUTER DECISIONS ([4), provides this
estimate of the size of the text processing market,
"Revenues from word processina have jumped from $936
million in 1977 to $1.5 billion in 1978 when 120,000 units
were acaquired, and are projected to reach 600,000 units,
grossing $6 billion, in 1983,"

Two factors causing management's acauisition of text
processina facilities are the secretarial shortage and the
low oroductivity of white collar and clerical employees,
Dunn, in "The Office of the Future Part II" (S], details
the secretarial oroblem in this way, "...last year [1978)
60,000 secretarial jobs went unfilled, thouah salaries are
rising more than 10% a year., By the mid=1980's the
secretarial shortfall could reach the quarter of a million
mark." Wilds, in "The Smart Way to Pick Word Processors” 1
{241, provides an example of the productivity impact of

text orocess- ing. A typical productivity increase

occurred at J, C. Penny Co. where the installation of text

processing equioment cut turnaround time on typed documents J

L B AR -

A b S b« |

from "as long as a week" to an average of “"next day".
There are two orincival oroducts sold by texte~
processing vendors. Stand=alone text processors with price
tags of 36,000 to $12,000 each are the most popular, An
alternative, the ourchase of a word=processing package for
CPU's, makes text orocessing another data processino
aoplication., These packaces cover a considerable price
range uo to $75,000., Indeoendent supoliers, rather than
comouter manufacturers, orovide most of this software. A
representative sampling of text processina software
packages, derived from the January 1980 issue of COMPUTER

DECISIONS [(19), packages would include the following?

= WORDeONE==used with IBM 360/40 or above, 370/
135 or above, 4300 series, National and
Amdah) systems:?: sold hy Bowne Information
Systems for $65,000;

= AZ-TEXT==ysed with Data General's Advanced
Operatina System and Ecliose System; sold by
Data General Corporation for $4,000;

= Datacoint Word Processina=-used with Datapoint
3800, 1800 and 1500 series processors; sold by
Datapoint Corporation for $750;

= Wordeli==ysed with DEC RSTS/E timesharing
executive; sold by Data Processing Desian, Inc.

for ‘7'5000

16

There are many text processing systems available for
microcomputers. The followina packages are a few of those |
availaole for INTEL-based 8080 and Z-80 microcomputers.
Smal) Buysiness Applications, Inc. markets Magic Wand at
3400. The Software Store has MWP (Mini Word Processing
System) for $195., The TRS=80 Microorocessor can use either
The Electric Pencil, for $100 or $150, or Scripset, for $69
or $99, These software packaqes can be economically .
integrated into existina systems without the ourchase of
special hardware,

As previously mentioned, stand-alone or dedicated
systems are the most pooular. The vendors of these systems
market a complete hardware/software package consistina of a

workstation and the sucport software. These systems

usually have specialized terminals. "Clustered, or shared
resource, word orocessing svystems (which rely on minis and
micros) are the fastest growing word processing segment"”
according to FORTUNE (20). CPT, Lanier, AM Jacquard, Wang
and Xerox are onlv a few of the vendors marketing these

systems,

8. COMMERCTAL TRENDS
Several interesting developments are occuring in text
processina., First, CRT=disolays are inheriting the market
trom nondisplay systems, Text orocessors that use hardcopy
terminals exclusively are being recognized as less

oroductive and less attractive. Also, significant price

17

b s~

e e e e ——

decreases make display systems more attractive. Second,
there is a trend toward resource sharing and joint text
processing and data orocessina. In this area, AXXA
Corporation tackles executive and secretarial productivity

with its new dual workstation, supporting text processing,

electronic mail, calculation, data processing and file
access. Xerox Office Products announced the 860 Advanced
workstation that performs text processing, system booke
keeping and data orocessing. Finally, the new sSystems are
multifunctional. Text orocessing is inteqrated with
telecommunications, facsimile transmission, numeric

processing, electronic mailing, data entrv and access, and

other functions such as search/sort, filing, statistics

generatijon, etc, (20, 25]

C. EXISTING NPS TEXT EDITORS AND FORMATTERS

To evaluate the current state-of-the~art on camous, 3
review of ten editors, formatters or word processing
systems was undertaken., These systems were either used by
the author or observed in use, User's Manuals and other
system documentation were reviewed, The followina systems

were examined:

(1) CRT Text Editor NED, 1977, used on the
POP=-11/70, t21;

(2) AM0S/2 Editor, 1972, used on the AGT=10,

telr; =

i
{
i
¢
i
‘

18

(3) EOT Editor, 1977, used on the PDP=-11/50, (7});

(4) 1Interactive Dispolay Editor Vi, 1979, used on
the PDP=-11/S0, [(13);

(S) MNROFF text processor, 1974, used on the
pPOP=-11/S0, (16):

(6) TED editor, 1978, used on the 8080 and Z-80,
(21);

(7) PRO formatter, 1978, used on the 8080 and
Z2-80, t21);

(B) UCSD PASCAL Screen<-Oriented Egitor, 1978,
used on the 8080 and Z-80, (221;

(9) UNIX Text Editor Ed, 1975, used on the
PDP=-11/50, t23): and

(10) WPS=R Word Processina System, 1978, used on

the PDP=R, {26],

These systems covered the entire spectrum of text
editors and formatters from the simole, relatively
unsophisticated, general-ourpose models to complex,
sophisticated, soecialized systems, They also orovided a
fairly reoresentative historical develooment of text
processing systems, from the non-intersctive, line=oriented
NROFF formatter (1974) to the interactive, dispay=oriented,
context editor Vi (19A0), and the integrated, interactive,
screen=oriented context WPS=8 Word Processing System

(1978).,

19

BT Y55 A XICORPIIOR

Of the ten systems examined, the WPS=8 was the only
stand-alone text orocessing system, The other systems were
run on qeneral=puroose computer systems, Termina)
characteristics varied considerably among the reviewed ;
systems, ED, NED, NROFF and WPS=8 ytilize special qraphics i
terminals, NED and WPS=8 require soecial function keys. |

UNIX's Ed and Vi, PRO, TED, and UCSD's editor, can be used

on a wide ranqge of terminals, both intelligent and dump,
disnlay or hardcooy. AM0S/2 uses a teletyoe.

Of the editors surveyed, AM0OS/2, EDT, UNIX's Ed, and
TED were line=oriented. The context=-oriented editors were
NED, Vi, UCSD's editor and the WPS-8, NED and UCSD's
editor performed some formatting functions such as margin
setting, filling, centering, right justification, etc., Vi
and WPS=8 had the most extensive command sets, The command
vocabulary was, unfortunately, so extensive that the user
had to frequently refer to system documentation for helo.
Some of the commands were very similar lookina but
oerformed widely different functions. The special function
keys on the NED and WPS-8 terminals facilitatead the editing
process. Editor commands were generally one character
followed by line numbers where aporooriate. Many commands
were mnemonically indicative of the action performed.
Cursor positionina was used on the context=oriented
editors, NED allowed the editing of more than one file at

the same time, as did UNIX's Ed., An additional feature

20

. e ———

SR

provided by NED was the capability to givide the screen up

into as many as ten comoletely separate and independent
edit areas.

Of the formatters surveyed, PRO and NROFF were
non=interactive while WPS~8 was interactive. PRO is used
as a post-processor for files edited with TED, and orovides
many formatting features includina footnoting. NROFF and
WPS=-8 provide almost any formatting feature ever thought
of. Commands were aenerally two letters in all three
systems and freauently had numeric arguments. NROFF and
TED are sometimes time=consuming to use because of their
non=interactive nature and the user's failure to correctly

visualize command results,

D. CONCLUSIONS

This chapter has provided a brief survey of the
state-of=-the=art in text processing., The evolution of text
processina over the last ten or so years has been traced.
Non-interactive, hardcooy systems have been replaced with
interactive, softcooy or CRT-based systems. Line~
orientation has been reolaced by contexteorientation. In
the past, editors and formatters were sepsrate systems but
now they are fully intearated into a comprehensive text
processina system. Special hardware, terminals and micro=
and miniebased stand~alone sytems, have been developed and
are gquite common, Not only do the text processina systems

of today oerform aditina and formatting duties but they are

21

|
i

also canable of performing a wide range of other functions,
such as system bookkeeping and data processing. Multie
functional text processina has become an intearal part of

today's automated office.

22

IIT. OESIGN METHODOLOGY

A, PRODUCT DEFINTITION]
Before any desian could be contemolated, the final
product had to be envisioned and defined from a user's §

point of view. The product of this effort is an

integrated, interactive, screenvoriented text processing
system, SCOPE, Screen=Oriented Processor and Editor,
performs the previously defined functions of both a text
editor and formatter, It is imolemented on the existing
POP=-11 mainframe, using existing terminals and software,
SCOPE is aqeneral-purpose and is not intended to perform
graohics or uncommon formatting functions, e.g. the
generation of two columns of text necessary for some
publications. Thesis preparation was a consideration in
the selection of desired formatting features.

From the ten NPS systems reviewed, the followina were
chosen as models for this thesis:

(1) the Vi Interactive Display Editor,

(2) the UCSD PASCAL Screen-Oriented Editor,

(3) the text editor TED, and

(4) the text processor PRO,
In addi?%on- a UCSD PASCAL Formatter, written by the

author, served as a model.,

o s m it - -

@

The goals, the desian ang the development process of

SCOPE will he discussed in the remainder of this cnapter,

B, DESIGN GOALS

Further research was undertaken to determine the
elements of a gqood desian. The following paragraphs detail
design qgoals, set for other desiqgn and implementation
porojects, that were acoplicable to this system, These
references, "Overview of the Functional Features and
Software Desian for a Display Word Processor™ [14];
Kerniahan and Plauaher's chapters on editina and formatting
(1S1; "Text Handline in an Automated Office” (17); and
*Develooment of an Experimental Disolay Word Processor for
Office Apolications" [1R); served as the basic source
documents,

In SOFTWARE TOOLS (151, Kernighan and Plaugher discuss
editing and farmattina desian factors. The following
points were made in their discussion., Human enaineering
(the analysis of man's habits and work patterns in the
attempt to optimize the man=machine interface) consider=
ations are identified as the orimarvy desion factor. For
this reason, an interactive system has streamlined and
terse communications with the user and is easy=to-use.
Experienced users were found to prefer concise commands so
brevity and mnemonic value are counterbalanced. They
recommend that most ?ormattinq occur automatically., Error

recovery is identified as the second major desian factor

24

PO O i

= SASANGIOII i W - Sau gt o1 ¢ g YR iy e i

and briefly descriped. The system cannot quit when a user
enters an erroneous command but must recover gracefully,
Valuable information must be protected from loss due to
user error. Reliability is identified as another important
factor. Also, the desian must be well=organized because of
the size of the program. A flexible desian is desired to
allow for enhancements of more advanced features.

"Develooment of an Experimental Display wWord Processor
for Office Applications" (18) furnished the following
design information, This software design was heavily
influenced by considerations of response, ease-of=-use and
extensibility., A key objective in the desian was to
emulate the tvpewriter in order that the user could
instantly and accurately be shown the status of the
document beina edited or formatted. Minimization of
operator fatigue was considered to be an important factor.
Displays were used to simolify the user's job and the ‘'soft
copvy' eliminated the slugaish resoonse of a hardcopy
terminal. Unlike 'blind' systems where the operator must
keeo a mental image of the desired fininished output and
maintain knowledge of the location of material in order to
edit or format, this display~based system performed these
activities for the operator. The results of keyboard
editing and formatting actions were instantaﬁeously

disolayed. The keyboard and the soft copy orovided by the

disoplay served as the primary interface for user/system !

dialoque. User error was reduced by differentiating
between text and command inout. Althouah the command
repertoire was extensive, users were found to rely upon
bnly a few bhasic commands,

In addition to the factors mentioned in the previous
paragraph, “"Overview of the Functional Features ana
Software Desiaon for a Display word Processor” (14}
discussed further efforts made to aid the user. Informa-
tion on the CRT reguiring operator interaction was
disolayed using menus. A messaqge area, "status and alarm
area", was used to display messages to the user which
indicated the current command, system status and error
conditions. The HELP display provided information
pertaining to the user's current state, e.g. current valid
commands.,

"Text Handlina in an Automated Office” (17) exoressed
the design views found in the following paragraphs. The
design aims in this project were to achieve a good human
interface and an efficient implementation, A good human
interface meant that the system was easy~to-use ana
easy-to-learn and could be basically described as 'friendly
and forgiving'. An efficient implementation meant that the
provided services were adaptable (easily modified or
expanded), many concurrent users could be supported and
machine resources were utilized efficiently, Emphasis was

placed upon streamlining the human interface, makina

R ey L Ryay—somen - —~ -

services adaptable to changing requirements and utilizing ;

comouter resources efficiently.

Features that enhanced the human interface were a
unified command structure, a message area and a uniform
mechanism to store and display text. A good human
; interface was achieved when actions common to different
services were initiated by the same commands. Full=word
wraparound and rudimentary text formatting, such as default
margin settings, double spacing, etc., to make the text
more readable, were provided during text insertion to
improve the human interface. Full=word wraoaround
automatically forces a word which would extend into the
right margin to be moved to the next line down. The
message area was set aside for command entrv, i.e. to
disolay and edit commands during their composition; error
messaqaes; machine status; etc. It was protected, i.e. no
user services could be invoked in it. The cursor served as
the pointer to the text being edited. Commands for moving
the cursor and positioning the text window, 1.e. the block
of text currently disolayed in the screen, were uniform
across all services,

Efficient utilization of computer resources was
obtained by storing as little information about the screen
as oossible, avoiding duplication of code and minimizing
the communication between screen and the computer., This

system avoided duplication of executable code by unifying

27

the various constructs, operations and data structures

common to a number of services and implemented them as a
common oool of subroutines. In addition, each service had
its own special purpose routines. This design strateqy
made code more compact, but also=-even more importantly=-
made the the system more adaptable. Existing services
could be modified by adding new soecial puroose routines or
by enhancina the common routines. The same commands in
each service performed a common action making the user's
job much easier,

Based on these observations, the followina design goals
for the SCOPE system were set to achieve a friendly,

forgiving and easy=to=-use system:

1. to utilize the display or screen as the
editing and formatting vehicle,

2. to provide extensive error=checking and
graceful error recovery.,

3. to develop a uniform command structure of
brief m;emonic commands,

4, to incorporate a display message area for
system=user communications,

S. to assist the user through the presentation of

menuys and a current command status display,

6. to develoo a relijable progranm,

28

7. to facilitate proaram adaotability and

maintainability,

8. to utilize computer resources efficiently,
and in addition,

9, to orovide hardware independence in the use of
printers and terminals, i.e, to specifically
eliminate the requirement for sSpecialized

hardware,

The overall SCOPE design is simple and straightforward,
Program reliability and maintainability were much more
important than the considerations of speed and storage.
This does not mean, however, that processor and Storage
resources were inefficiently utilized. Tradeoff decisions
durinag the desian process were made in line with the
following list of oriorities, in order of importance;
ease-of=-use, orogram reliability, proaram maintainability

and finally efficient utilization of machine resources.

C. THE DESIGN PROCESS

The design process proceeded in phases. It was
iterative and incremental in nature. The initial phase
dealt with the consideration of terminal characteristics.
Phase Two defined the overall system structure and
cavabilities, Subsequent phases dealt with the definition
of new features and sometimes with the redefinition and

enhancement of existing ones.

29

i, Terminal! Characteristics

The first step in realizing the desired product was
the consideration and selection of a minimum set of
terminal characteristics necessary for a
screen-orientation. Only CRT=eauipped terminals were
considered for this reason. Specifically, two dumb
terminals, the ADM=3A {1]) and the DM=1520 (8], were studied
because they were used in the implementation. In addition,
the DM=2500 (9] was considered to add a greater degree of
generalization and hardware independence. Ideally, the
terminal used would have an extensive keyboard with many
special function keys, e.q. delete, insert, etc., and a CRT
screen large enough to display a full page of output text
at one time. This system, however, is not intended to run
on the ideal terminal but on a large number of widely
available dumb and intelligent terminals.

To achieve the oreviously mentioned cesign aoals of
generality and hardware independence, the terminal
characteristics chosen for inclusion in the minimum
required set are present on most dumb terminals. The
following terminal characteristics are necessary for

successful imolementation of this project:

a. Standard ASCII character set (upper and lower

case, numerals and pounctuation marks),

30

b. nondestructive cursor movement in four

directions (up, down, right and left),
c. CRT screen dimensions that allow the display
of 12 or more lines with 60 or more characters

per line,

d. communication rate of at least 1200 baud,

e. hardware scrollina feature (cursor movement
past the bottom line on the screen causes all
all the above lines to move up one line),

f. absolute x=y addressing,

9. clear screen,

h. carriage return,

i. bell (used to alert user when an error is
encountered), and

4. control code aeneration.

Uoon entry into the system, the user will indicate
which terminal type is being used. The system will then

make the necessary ASCII code assignments to variables

holding the codes for such display functions as clearing
the screen or moving the cursor non=destructively to the
right. In addition, the user will indicate the printer

type to be used for the generation of hardcopy output,

2. SCOPE Features

The next ohase in the design process was spent

defining tne features or capabilities to be included in

31

o e X T

ot e ———_——

SCOPE. The text processing systems reviewed in section
Il.D. were the sources for the chosen features. Each major
feature is listed and briefly described in this section,

For purposes of clarity, the features to be included in the

. SCOPE design are grouped into six categories.

a. File-Handling

SCOPE needed to be able to create new files,
save files and access previously saved files. A hardcooy
printout of the processed document should be readily
available and may or may not be produced directly on the
orinter, A listing file may be created and sent directly
to the orinter or saved in storage for multiple hardcopy
production at the user's discretion., SCOPE generated files
are incomoatible with other UNIX editors and formatters due
to embedded tormat commands. For this reason, SCOPE should
allow the user to put files together in various ways within
the buffer and to write out partial buffer contents as a
file. Any SCOPE file may be added at any location within
the buffer as long as there is enouqgh space ir the buffer,
In addition, any seament of text in the buffer may be
coried out and saved as another separate SCOPE file. These
two features should facilitate the "cut and paste” aspects
of document reorganization.

b. Screen-Orientation
SCOPE should be a screen=oriented or

disolay=based svystem, The screen will provide the user

32

b

with a3 'soft copy' of the finished document. The visua!

gdgisplay will serve as the editing and formatting vehicle,

The user should be made immediately aware of the results of

any editing or formatting commands. No guesswork should be

involved. A screen=orientation should take advantage of

the visual nature of the editina and formatting process.,
Cursor positioning will determine the text H

displayed to the user in the text window on the screen and

will pinpoint the location of most command actions. A

reasonably fast system response is required to maintain the

correspondence between the user's commands and the cursor

movement, A slow resoonse, typical of a busy timesharing

system, disrupts this correspondence so that user entries
anppear to be ignored by the system thereby confusing the
user and causing him to introduce errors by auplicating
entries and receive unwanted results.

Cursor movement should occur in one of four
directions at a time, right and down for forward movement,
and left and uo for backward movement throuah the text.
Movement of the cursor should proceed a character at a time
or a line at a3 time. wWraparound from the end of a line to
the beginning of the next when goinag forward, or from the
beginning of a line to the end of the previous one when
going backward should be provided. A carriage return
should place the user at the first character of the next

line down., Other commands should be available to speed

33

movement through the text by scrolling through the text a

screenful of lines at a time or a oage of lines at a time,
where a page reflects the hardcopy page length, Context

should be maintained during rapid movement through the file

by overlaopina or repeating a few lines from the last I

screen display of text when scrolling a screen at a time. i

No overlao need occur whem paging through the text. 1In t
addition, the user sktould be able to jump to the beginning
or end of the file upon command.,

t. System=User Communications

SCOPE should be an interactive text processing
system, The screen should be the primary interface for
system/user dialoque. Being interactive, system response
time will be a major determining factor in SCOPE's success,

The user will reauire instantaneous echoing of his input
for verification purposes and should be able to make
correc~ tions by erasing input characters. Svstem=user
communications are not minimized in this desian because
many SCOPE ooerators will be casual users. Such users will
not want to spend a lot of time relearning the system,

A messaqge area will be a specially defined-area
on the screen for the inout and display of user commands,
the display of error messages, the display of current
command status, i.e, which commands are currently available

to the user, and the display of orompts and menus. This

message area should be protected from other system features

except in the case of the terminal's hardware scrolling.

The user Qhould be coached during a SCOPE seséion through
the use of menus describing the available ootions and
prompts describing the command action and how it is
initiated,

There shculd be a uniform command structure of
short mnemonic commands. The same command should cause the
same action across the orovided services, e.g. a 'q' will
allow the user to exit or quit any service. A relatively
small set of powerful commands should be available. Text
input and command input should be differentiated for the
user, It is important to keeo the user informed of
processing actions not apparent to him, e.g., writing of a
file, by signalino their successful or unsuccessful
comoletion. System messages to the user shoulo be
conversational in tone and understandable. A cryotic
messaqge only serves to confuse and alienate the user and to
introduce error.

d. Error Handlina and Recovery

SCOPE should attempt to prevent user error as
much as oossible by oroviding extensive error=checking. As
mentioned oreviously, slow response time will increase user
input error as typoaraphic errors become more freauent,
User command and text input should be carefully screened to
recognize invalid commands or nontext characters as soon as

possible. However, since all user errors cannot be

35

e el e T BB et irns . S

anticivated, the desian of the system should attempt to
minimize the impact of those that do occur. In general,
error handling should consist of providing the user with a
descriptive error messaqge, forcinaga active user recognition
of the error condition and finally re-prompting to provide

information about valid command options available. Grace-

fulerror recovery should be attempted and accomplished

except in the case of a catastrophic error occuring to the P

base system. The user should be protected from the loss of
text by requiring positive confirmation of its deletion or
the provision of backup files.
e. Editing

SCOUPE should orovide editing features to
facilitate the composition of documents and programs.
These editing features may be invoked auring initia)
creation or after creation and storage. During the editing
session, the user should be able to move the cursor or
issue scrolling commands for forward and backward movement
throuah the text to pinooint the location of the egit
action. A standard/ default set of formattina
specifications should be in effect unless the user sets
other specifications, The followina list of specific
features should be available through the SCOPEF editor,

« Insert==should allow the user to add text to
the buffer before the character at the cursor. Input text

should be screened for invalid entries and disolayed on

36

i
j

the screen. The user should be abe to erase input

characters, If the text is being filled, automatic
ful)=word wravaround should be provided at the end of the
line, User acceptance or rejection should determine
whether the added teig remains in the buffer. The user
should be orotected from buffer overflow.

= Delete==should allow the user to remove
text from the buffer. A character or an entire line may be
deleted at a time. Cursor movement should indicate where
the deletion occurs. Up or down movement should delete a
line, while right or left movement deletes a character.
The direction of deletion, forward or backward, should be
consistent during the deletion pbrocess. Contradictory
cursor movement should cause the last deletea line or
character to bhe restored to the screen and in effect negate
the deletion process., Actual removal/deletion of the text
should only occur within the buffer upon positive user
confirmation. Unti)l this confirmation, the text will only
"appear” to ve deleted on the screen,

= Locate~=should allow the user to pinooint
the first location of a specified pattern or string of
characters if it occurs within the text. This alobal
search should begin at the current cursor position and
proceed in a forward direction. Only a successful search
will reset the cursor oposition to the beginning of the

"located” pattern. In the event of an unsuccessful search,

37

the cursor and the text window remain unchanged.

= Reolace==should allow the user to substitute
one string of characters for another reqardless of their
respective lengths at every occurrence of the target within
the remainder of the text. This global substitution should
begin at the current cursor position and proceed in a
forward direction only. The user should be protected from
buffer overflow.

- Exchanae==should allow the user to
substitute one string of characgters for another of the same
lenath at the current cursor position. As the cursor moves
forward the user inout character will overwrite the
existing buffer contents.,

= Copy==should allow thé user to duplicate
parts of text within the buffer, The user should be able
to delimit the material to be duplicated and oosition the
cursor at its new location. Copied text should be placed
in front of the character at the cursor. The user is
protected from buffer overflow,

= Move=-should allow the user to reposition a
segment of text within the buffer, The user should be able
to delimit the text to be moved and position the cursor at
its new location, The delimited text should be placed in
front of the character at the cursor.

= Extract==should allow the user to write out

a portion of the text to another SCOPE file. The user will

e

R . S AN & i o N .

delimit the body of text to be copied to another file and
then initiate the process. The original text should remain
unaffected in the buffer.

= Add==should allow the user to add another
SCOPE file to the contents of the buffer. The cursor
position will indicate the position of the addition. The
new text is placed before the character at the cursor, The
user should be protected from buffer overflow.

f. Formattina

SCOPE should provide formatting features to
improve the final document or proaram's appearance and
thereby increase its readabiliity. The formatting features
in the design were principally determined by the
requirements of thesis oreparation. During the formatting
session, the cursor should mark the position of the
formatting action., Formatting specifications may be set
before text creation and ¢an be modified at any time. The
formatting specifica= tions should be in effect from their
initial setting/entry point until changed or nullified.
Most formatting will be provided automatically on the basis
of a standard/default set of specifications derived from
the NPS Thesis Manual. The following list of specific
features should be available through the SCOPE formatter.

= Margin Setting==shoula allow the user to set
or change the left, right, paraaraph, top., bottom and page

marqgins at any time,

39

= Page Lenagth==should allow the user to set or
change the number of lines that can be written to the
hardcooy output.

= Line Soacing==should allow the user to set
or change the soace between lines of text. Sinale, double
and triple spacina should be provideda.

= Skio Lines==should allow the user to add
extra soacing between lines by skipping a soecified number
of lines or writing a specified number of blank lines.

« Page Numbering=~should allow the user to
number or not number the pages of text. The user should
also be able to increment the page number on a specific
page.

-~ Paqe Eject==should allow the user to end a
page at will and skip to the top of a new page.

= Fill==should allow the user to put as many
words as opossible on a line of text and will be the default
mode. Filling should not apply to irregular lines such as
titles or running headers and footers.

= No Fill==should allow the user to place
particular words on a line and create irregular lines of
text.

= Center==-should allow the user to center a
line of text,

= Riaht Justify~=ghould allow the user to

align a line of text along the right margin.

490

o ks o a

« Underline==should allow the user to

underline characters within the text. Punctuation marks

IR Db

should not be underlined.

= Adjuste==should allow the user to generate
filled text aligned along the right margin. Extra blanks
will be inserted between words to achieve this result.

= Indent==should allow the user to indent or
move the text to the right a specified number of spaces.

= Tab==should allow the user to set tab stops.

= Table~Handling=-=should allow the user to
easily construct tables or columns of text using the tab
key.

= Titles==should allow the user to indicate
five different types of titles or headers, first through
fourth-order and other. The system should automatically
format the first through fourth=order titles as per the
thesis manual, while the other type is centered on a new
page. Header numbering and lettering should be considered
for possible inclusion.

= Ruynning Headers and Footers==should allow
the user to write a specified message across the too or
bottom of every page of the document. The user should also
be able to specify where within the too and bottom margin
the header or footer is located.

 Paraaraph/No Paragraph==should allow the

user to define a3 new Daraqraph or return the text to

41

non=paragraoh status.

- Footnote==should allow the user to inout the
information to be contained in the footnote which will then
be automatically positioned by the system in accordance

with Thesis Manual directions.

D. TESTING

Ease of testing was an important design consideration,
An incremental aporoach should be generally taken in
testing. In this method each module is designed, coded and
tested by itself and then added to other tested, working
modules. Incremental testing greatly simplifies debugging
by limiting the scope of the errors encountered. It also
allows the discovery of logic and implementation errors
early enough to prevent their repetition in other modgules
and thus eliminates the need for major redesians once
underway.

Two debugging tools were designed to aid the test
process. 0One tool was a procedure which displayed the text
angd format commands within the buffer upon the screen. The
second was a program which orovided a listing of the raw
file. Both of these tools replace the format commands with
soecial or text characters to allow their display/listing
because the control codes themselves are unorintable and

could generate unwanted results, e.9. a form feed,

42

D e Tl

R PR

E. DESIGN APPRAISAL

Why is the SCOPE design “better" thanm other existing
systems? A prief comparison of SCOPE and the reviewed

systems highlights the critical differences. SCOPE’'s

integrated'editor and formatter concept is superior to i
separate editor and formatter packages, like TED and PRO or
Ed and NROFF, because the user performs both editing and

formatting while executing a single system. Because of its

rne WMt e 1r it

interactive nature, SCOPE is easier and faster to use than
NROFF or PRO, A user can, with SCOPE, change a format
specification and immediately see the results rather than
having to visualize them. It is no longer necessary to
produce a listing or a display in a separate process for
verification purposes.,

SCOPE orovides more extensive formatting features than
are availaple in NED, Vi, or the UCSD PASCAL editor, and
supports these features with on=line user aids. The user
assistance provided by SCOPE is more comprehensive than
that of any of the reviewed systems. The conversational
prompts and error messaqges coach the user through the text
creation process. The learning curve for effective system
utilization is significantly reduced for the casual users,
who should be able to operate SCOPE with a minimum of
external documentation,

SCOPE's limited and simole, yet powerful, command

structure is designed to be less confusing to the user than ;

T

ot

many of the others have proven to be., The mnemonic
commands are intended to be easier to understand, remember
and to use than those of earlier systems.

Finally, unlike NED and wWPS=8, SCOPE does not require a
special terminal with specialized function keys and/or an
enlarged CRT screen but can be used on a wide range of dumb
and intellignt terminals.

In conclusion, the SCOPE design is a "better” design
because it attempts to incorporate the most attractive
features of the reviewed systems while avoiding the

limiting aspects of earlier systems.

44

Iv, TMPLFMENTATION

This section provides aeneral information abhout the
SCOPE svstem. Proqram details may be obtained from the
oroaram listing (Acoendix B) orovided. The listing also
provides system documentation. Anm inital introduction to
the system is provided along with comoilation and execution
instructions. A list of abbreviations used throughout the
program is included. Each function/procedure is briefly
described in the prearam. Mnemonic names, modularity,
straightforward loaic and code as well as aoprooriate #
comments facilitate proaram understanding., Each
function/orocedure is short engugh to appear on one page.

Indentation and the PASCAL kevywords aid in the tracking of H
proaram flow. Finally, most variables within the SCOPE
oroqram are alobal in nature.

The SCOPE implementation presented here is character=
ized by its isolation of imolementation details and its
modularity. The isolation of as much as possible of the 1
actual impolementation from the program as a whole is
recommended by Plauaher and Kernighan (151. This
recommended technique facilitates the optimization orocess
or the selection of a new strategy because the desired
result can be obtained by simply altering low level buffer

management routines. The second attribute of this

imolementation, its modularity, is recommended by Sharma in
(171. Modularity makes the provided services more adapt-
able to changina reauirements, There is a common pool of
general-purpose subroutines that are called by many of the
services as well as special =ourpose routines.

During the implementation process the UNIX system
provided two handicaps. The first difficulty was the slow
resoonse time., UNIX suffers measurable degradation
whenever qraphics-related orograms are executed and/or
multiole users are on the system. The second difficulty
had to do with the special terminal conditions under which
SCOPE operates, which are explained in section D. These
conditions were a nuisance when tryina to execute commands
and proarams outside of SCOPE, The freauent and necessary
changes of the terminal conditions were not only

inconvenient but tended to increase user error.

A, PROGRAMMING LANGUAGE SELECTION

An imoortant consideration in the system imolementation
effort was the selection of a suitable programming
language. A high level lanquage was sought. Desirable
features included structured constructs, flexible and
extensive data structures, and extensive error-checking and
diaanostic facilities, In addition, the languaoce had to be
able to distinguish between every character input at the
keyhoard=~-especially control codes which serve as commands.

Secondary selection criteria were availability

4e

e e

(unfortunately the new PL/] compiler by Digita) Research

was not available) and transportability, PASCAL met all of
the above mentioned criteria and was chosen. Soecifically,

the Berkeley Version 1,1 [10] PASCAL imolementation was

selected bhecause of its attractive run=time ootions, A
PNDP=11/50 minicomputer under the UNIX timesharing system

(23] served as the host comouter,

B. PROGRAM LOGIC AND STRUCTURE

Software engineering orincioles (121 were avplied in
developinag the pbrogram structure, The top-=down design
aoproach was followed. Major functions to be performed
were analyzed and decomposed into smaller, more easily
managed subfunctions. Functional mndules were desianed to
be subproarams, i.e. functions or procedures, and were
limited to one oaae, During the analysis and decomoosition
phase, SOFTWARE TOOLS (151 and Triyono's thesis (211
orovided invaluable assistance,

Codina and debuaqinag were simolified and overall
proaram clarity improved by always selecting the simplest
and most straightforward technique to accomolish any
"tricky” or comolex actions. In addition, a single
prompting orocedure and a separate error message orocedure
were set up to centralize system communication with the
user., Finally, tradeoff decisions were made whereby
proaram simolicity, reliability and maintainability were

considered more important than speed, storaqge or overall

47

b e S e et an P R

efficiencv.

C. DATA STRUCTURES
The Berkeley version of PASCAL does not provide string
manipulations and it does not allow the reading of strings

from text files. In addition, it allows only scalarse=

inteaer, characters, or boolean values~=to be oassed as

suborogram arqguments. Finally, set implementation is such

that sets may not be declared as constants, nor do sets
defined to contain character variables assigned using the

standard function CHR behave correctliy, Despite these

shortcomings, data structure selection was not a difficult

oo TEY

ohase. In order to facilitate chanaes the actual data
structure is hidden from higher level modules by a low
level buffer management function desianed only to
manioulate the data structure.

Nithin this system there are two principal data
structures. The first is the "raw" text file as it exists

in storage when not being acted on, It is a seauence of

R

P character data. It consists of the text characters and
format command/characters. Integers, reals, booleans,
strings and unstructured data types may not be included in
this file. This file contains a beginning and end of text
character or marker, Within the text, the lines and the
paragraphs are set off by a line or paragraoh marker
rescectively. Althouah this line orientation is not

strictly necessary it does simplify many operations,

48

F—-,—E:s

particularly the mapoing from screen to buffer exolained in
; Section IV.6. The addirional system overhead in
maintaining these line markers is a small price to ocay for
the simplification. A paraaoraph marker, once set by the
user does not change its relative position in the text
unless the user resets/deletes it. A line marker, on the
other hand, may be frequently shifted if as many words as
possible are being nlaced in a line, i.e. filled text, or
text is inserted or deleted before the line marker. Line
and paragraoh markers occur at the beainnina of a line or a
paraqraoh.

The format commands, other than markers, embedded
within the text indicate soecial orocessing that is to
occur to the raw text before display or production of a
listing can occur. A format command's range of effect can
vary from only one character to the entire file. If the
text file is created usina a non-standard format, the
characters in the file immediately followina the beninnina
of text marker are arouped toqether and called a "format
record”. This record only contains those user format
specifications that differ from the standard menu orovided,
It should be noted that the raw file is useless unless the
embedded format commands are masked out ard orocessed. [he
standard PASCAL (11) orocedures READ and WRTTE and function
EQF (end=of=file) are used to manipulate da*a within the

text fi'e'

49

Space usace was carefully considered. The line an4

paragraoh markers and format commands could add a
significant amount of overhead to the system by taking uo
unnecessary soace that could he used for text. This is not
the case, however, becauyse most markers and format
commands, however, overlavy what would be a blank between
words., Extra blanks associated with indentation,
tabulation and the end of a line can bhe eliminated or
comoressed. Within a line two spaces following the
punctuation marks, '.', ':', '!', ang '?' will not be
comoressed because the maoopina is simplified. Two
procedures PROCESSBUF and PROCESSRAW eliminate and compress
extra blanks as well as insure that pPunctuation requiring
two spaces is followed by two spaces where aporopriate,

The most imoortant data structure within the SCOPE
system is the text buffer, Figure 4=1 is a diaaram of the
SCOPE buffer. Text and format commands, such as pm, reside
in this data structure while ynderqoing user operations,
This buffer is a large array of characters of approximately
30,000 bytes. There are several inteaer pointers indexing
this arrav, BUFINDX is the current location of operation
within the buffer. INSBEG and INSEND are pointers which
delimit the INSFRT AREA within the byuffer. BUFLIMLIT is the

last oposition in the arrav. CH is always the current

character at BUFINDY,

e et e

Movement throuagh the huffer is accomplished via the
GFTRUFCHAR (Direction) function, exceot in the INSERT mode,
where Direction is +1 for forward movement, 0 for no
movement, and =1 for backward movement. The text character
immediately oreceding the INSBEG location appears on the
CRT screen at the cursor. Moving forward, i.e. right, down
or scrollinag down, throuagh the text 1S performed in the

following manner:

GETRUFCHAR(+1) which means that
BUFINDX := BUFINDX + 1

INSREG := INSREG + 1

INSEND := IMSEND + 1;

BUFFER [RUFINDX] := BUFFER{INSEND];

CH := BUFFER[RUFINDX] .

Movina backward, i.e. left, uo or scrolling up, through

the text buffer is cerformed in this manner?

GFTRUFCHAR(=1) which means that
BUFFER[INSEND! ¢ = BUFFERIBUFINDX]);

INSEND

INSEND = 1?
BUFINDX : = BUFINDX = 1

INSREG

INSBEG = 1

CH : = RUFFER(BUFINDXI],

S1

GETBUFCHAR(0) allows the system to re-reference the
current pbuffer location. All of the buffer pointers remain
unchanged. GETBUFCHAP cannot be used in the INSERT MODE
for reasons explained in Section IV.H,

READRAN handles the buffer initialization for both new
and existina files, A file must be read in and initialized
before EDIT or FORMAT processing. Buffer initialization
durina the creation of 3 new file involves entering the
beginning and end of text markers, entering an initial
paragraoh marker and setting the INSBEG, INSEND and BUFINDX
pointers. Remember that the current INSBEG and INSEND are
empty. Initialization for an existing file is somewhat
more complicated. First, the raw text file is read into
the buffer character by character where the first character
goes into the first buffer position, the second in the
second position, and so on. After the file is read, the
text must be shifted so that the INSERT AREA is correctly
positioned. The last character read in is moved to the
second to the last huffer oosition, the oreceding one to
the third to the last position, and so on until the
beginning of text (bot) character is reached. It is not
moved, The pointers, INSREG, INSEND and BUFINDX are set
and in this manner the INSERT AREA is defined. This INSERT
AREA is the key comoonent within the buffer. Text
insertion, deletion, cooyvyina and movement is accomplished

by resettina INSBEG amnd INSEND, More details of these

/
operations may he found in the program listina. Format

commands and line and paragrach markers within the buffer
are totally transparent to the user who only sees them
reflected on the screen,

Several other arrays are used within this system, The
running header and footer lines are each stored in an 80
byte array of characters. Two other arrays, of 20 inteaers
each, are used in the TABULATION and ADJUSTLN routines.

The column number(s) of the tab location(s) is(are) stored
in TABLOCNS. Similarly, the relative location of blanks
within a buffer line of text are saved in BLKLOCNS. These
stored values indicate the sites for the insertion of extra
blanks within the text line to achieve riaht justification

with fillina.

D. INPUT/0UTPUT HANDLING

The use of a hiah level lanquaae such as PASCAL
eliminates the messy details of input/output (I/0)
randlina. T1/0 to and from the screen is accomplished
using the standard PASCAL READ and WRITE orocedures on the
textfiles IMPUT (keyboard) and OUTPUT (CRT screen).

Correct SCOPE ooeration reaquires the settina of certain
[/0 ootions on the current terminal. The UNIX command
"stty raw ~echo nl"™ sets the necessary options, RAW means
that no erase, kill, interrupt are EO0OT characters a~e in
effect and that the parity bit is passed hback. NL tells

the system not to automatically generate a3 carriaace return

53

and line feea for a new line and that only a line feed will
end a line. Tt also orevents the use of the READLN and
WRITELN procedures. =-fCHO orevents the system from echoina
back inout characters to the CRT screen,

SCOPE filters the input characters and selectively
echoes back or writes to the CRT screen, preventing the
disnlay of unorintable control! characters. A typical case
is the handling of cursor movement in whijch the user
qenerates right, left, uoward or downward movement of the
cursor. INCHAR is the character read in from the user,

In addition to READ and WRITE, the RESET and REWRITE
procedures are used in I/0 to and from other files. INFILE
and OUTFILE are text files assianed soecific names by the
user, e.g. CHAP1 .0 and LISTING.o. The '.p' indicates a
PASCAL file. RESET is used to open existina files for
reading, while REWRTITE is used to ocemn and create a new
file. INFILE is used in the reading of raw text files and
OUTFILE in the saving of raw files and the broduction of
listings. READLN and WRITELN cannot be used on either of
these files because the UNIX eoln (end-of-iine) character
does not exist in SCOPE qenerated files. UNIX writes
QUTFILE in blocks of S12 bytes. The Berkeley PASCAL
function ?LUSH is reauired to dumo the last incomplete

block of output to the waiting file,

S4

4 sl i

The lack of strina manioulations causes all I/0 to be

done a character at a time which is somewhat tedious.
DISPLAYLN oerforms the necessary processing to display a
line of text on the CRT screen. LISTLN produces a line of
text for a hardcooy listing. Both of these oprocedures call
routines which orocess any embedded format commands and
only portray the "processed" text as opposed to the "raw"
text in the buffer, LUSERINPUT amg SUSERINPUT, for long
and short user inout from the terminal, perform the READ
function. They allow the user to enter a string of
characters with the ootion of erasing any mistakes by

tvoinoc a “control e" before hitting the carriage return,
LUSERINPUT allows up to 14 characters to be input and is

used in the naming of files. It automatically checks each

entry for a '.p' in the name and apoends it where
necessary. SUSERINPUT allows up to 4 characters to be
entered at one time, Two procedures are used because
strinas must be padded with extra blanks to their full
declared length. The slow response time, due to UNIX
degradation, was a oroblem. Not only is it disconcerting
to be tvoina several words ahead of what is being disolayed
on the screen, hut immediate error correction becomes
difficult. It is no longer a matter of simoly erasing one
or two characters that are incorrect. Instead, the user

miaht have to erase and lose several words to get back to

the error. In addition, during the erase action when the

SS

cursor is movina hackwards a delay can cause the user to
inadvertently erase more than intended,

Because only character data is read and written by the
SCOPE system there is no way of directly entering integer
values for such items as oaae numbers or margin settings.
To overcome this deficiency, CONVRTNUM transforms a
character number into its eaquivalent integer value. U? to
a three digit number may be converted. It currently

handlies only positive values.

E. THE SCOPE SYSTEM

Implementation oroceeded in an incremental fashion,
The initial phase implemented a minimum set of system
features. The minimum set of features allowed the
production of a simole pacer but not of this thesis. This
skeletal system was a barebones aoproach with many options
eliminated, e.g. the basic formatting specifications
setting uo the paae layout (maraqins, lines oer ocaae and
line spacina) were defined as constants. Durina the
analysis of system features, the basic system design
evolved into four nested levels or modes. At the highest
or outermost level, i.e. global mode, the system reads or
writes files, edits, formats or leaves the SCNPE systenm
based on the inout user commands. The alobal mode (SCOPE
DRIVER/MAINLIME) is the driver of the entire system,

Fiqure 4=2 is a pseudo code representation of the SCOPE

DRIVER,

The second level consists of the followinag essential

system features:

a. read in an existina file or create a new file,
b. write the raw file out to storaae,

c. edit the text file,

d. format the text file in a reasorable mannar,
e. orecare a hardcooy listina of the file, and

f. exit from the system,

Each of the above features, except system exit, is a
major module within SCOPE. Within this level lies the
third level of modules or subfunctions, e.q. INSERT and
DELETE for EDIT. At the innermost and lowest level are the
functions to manioulate the data structures and other
support routines, e.g. cursor movement and mappina. Cursor
movement anAd mappina are key modules which are discussed in
Section IV.G. The movement of the cursor on the CRT screen
must be correctly reflected in movement throuah the text
puffer. There must be a one=to-one correspondence between
the character at the cursor and this character's location
within the text buffer.

Entry to lower levels, e.q, subordinate modules, is
accomolished by calling the required pracedure or function.
Return to a higher level is usually accomplished via a

“auit"™ or "control! a" command,

57

F. COMMAND STRUCTURE

It is imoortant at this point to reiterate the chief
design aoal of this svstem which is to develoo a friendly
and foraiving tool. Users will probably not be using this
system on a daily basis and so will not be intimately
familiar with commands. Such casual users will not utilize
the system if a Yot of time must be spent learning and
relearning the command set, For this reason, it was
considered imperative to have short, simple,
easy=to-remember and easy-to-use commands. The command set
is also consistent throughout the different SCOPE modes of
operation,

This is an interactive, screen-oriented system and
these features are exploited. Three lines at the top of
the CRT screen are set aside permanently as a message area
for the disolay of oromots and error messages and the entry
of some user commands. Entry and exit from any of the three
outer SCOPE levels causes a orompt to be aenerated in the
message area. This orompt tells the user which commands
are currently available to him for execution and how to
initiate execution.

Commands are mnemonic and one character in lenqgth, The
command is usually the first letter of the action to be
performed, Some commands, e.a. page number, reauire entry
of a numeric arqument. Many commands are dependent upon

cursor movement, In some instances the control key is used

S8

TR TN s S e S B s ., PRIt YA

3 - o o A - ’
5 L ‘

in conjunction with another character to differentiate

OBl ol el

between a command and a text character, e.g, in the insert
8 mode. The EDIT and FORMAT commands are described in more

detail in sections TV.H, IV.I.

G. CURSOR MOVEMENT AND MAPPING

Establishina and maintaining the correct relationship
between the screen display and buffer was the most
difficult aspect of the SCOPE implementation. There has to
be a one=-to-one correspondence between the character shown
on the screen and its location within the buffer. Format
commands are transoarent to the user but must be reflected
on the CRT screen, e.a. a paragranh marker is shown by
indenting the line. Cursor mapoing is carried out by the
MAPCURSOR function which processes the format command and
sets up the screen display as necessary. SETCURSOR is
another maooing function which comes into play during the
scrolling actions,

There are two methods of cursor movement available and

both are oresented in fiqure 4«3, Movement within a single
line is fairly simole but wraooina around to the orevious
line, or jumoing multiole lines complicates the picture
auickly. Cursor movement is simplified by making it a
line=oriented nrocess., STARTLN and NEWLINE are key
functions in determining the correct user line location.
GETCHAR is used to oroduce movement one character to the

left or right. JMPTOMARKER allows the user to jump to the

59

P s s e U Py

beginning or the end of the currently active file., Further

details about the cursor mabping and movement are available
in the program listino,
H, EOIT

EDIT is probably fhe most important module within the
SCUPE system, It is used to move the cursor and thus scan
through the body of text as well as to make modifications
to the text., The EDIT commands are listed in Figure 4=4,
The uooer case letters are used to allow the same beginning
letter to be used, e.a. x for xchange and X for Xtractfile.
In addition, the capitals indicate file manipulations where
the lower=case commands only deal with the buffer, The EDIT
command modules closely follow the desian, with the

exception of SETMARKER which is used by almost all of the

other EDIT features to delimit the body of text to be
searched, copied, moved, extracted, etc. Many of the EDIT
features remain to be imolemented.

The initial imolementation involved only INSERT and
DELETE, 1INSERT adds text directly to the buffer through
the INSERT AREA., Because GETBUFCHAR, the low level buffer
management function works om the outside of the INSERT
AREA, it can not track the new characters entered into the
INSERT AREA, All inserted and deleted text must be
processed by PROCESSBUF to ensure that the line markers are
correctly oositioned. This processina occurs in paraaraph

increments because a paraaqraph is the smallest text

60

i

| seqment, During the text insertion process, certain

X formattina commands are entered directly by the user into
the buffer. JIrrecular lines during the fill mode must bhe
ended with a break character, Titles may be labeled at
this time. In addition, the fill, no fill, adjust, adjust
off and the tab commands may be entered.

Along with INSERT and DELETE, an XCHANGE function was
set up and used, This allowed the replacement of many
strinags of the same lenath, Because the string is the same
lenath during an XCHANGE there is no need to orocess the
the modified text which is more efficient then reading and
processing at least one paragraoh to reposition line
markers if necessary, Several users have enjoved the
automatic wravaround feature which speeds uo the inout

process.

I. FORMAT

FORMAT imnlementation has been limited to titles,
centering, tabs and other essential features for thesis
preparation. The following paragraohs describe the
intended SCOPE FORMAT implementation.

The Format mode can be entered at any point during the
editing session to chanae the outout specifications. It
also moves the cursor to scan the text, and in addition,
some commands deoend uoon the cursor for proper execution,
The user moves the cursor to the oosition from which the

forma?t command will begin to have effect, enters the

61 S

correct format command and is then orompted for the correct

command arquments, Formatting changes are immediately
reflected on the screen for user examination.]

Figure 4=5 outlines the FORMAY command structure, User
commands are alphabetic characters hut the format commands

in the buffer are control codes. Al]l the format commands

were assianed contro)l codes so that they could he easily
distinguished from text characters, The decimal ASCII code
is the argument for the PASCAL CHR function which is used
to assian and identify all the format commands within the
buffer. The keyboard control characters are used
infreauently by the user during the editing and formatting
process. Certain commands, e.q. break, adjust, adjust off,
fill, no fill, paraaraoh marker and tab may be entered
directly by the user. Within the buffer, the numeric
arguments for any format command, immediately follow the
command and are themselves followed bv a break character so
that they may be easily distinquished from text numerals.
Whenever possible, the input command (command syntax) is
mnemonically indicative of the action to be performed, e.q.
‘u' for underline. The slashes in certain commands
indicate that the command is complex, has multiple
arguments and that the user will go through a series of
oromots during command entry., Margins are a good example
in which the user makes three different entries to set a

specific margin,

62

Menus such as those presented in Fiqures U4=6 and 4-7,
are disolayed unon user request to describe the current]
outout specifications., Fiqure 4=6 will be displayed unless
the user has made some format chanqges. Figure 4«7 will be
displayed, if any of the default specifications have been

altered.

J. WRITE RAW FILE

This module is the simplest of the main modules., It

writes out every text character and format command, except
a rubout character, within the buffer to the user-soecified
file. The rubout character is used for the deletion of

characters or spaces when it is inconvenient to manipulate

the IMSERT ARFA to do so. In this manner SCOPE files are

saved for future use.

K. LIST PROCESSED FILES

Hardcooy orintouts or listings af the text file are
required whenever the screen display is not adequate, e.gQ.
proofreadina is often more easily accomplished on paver,
This porocess is hardware dependent because orinters have
various drivers, carriaae control mechanisms and
top=of=form alianments. To provide some deqree of hardware
independence, SCOPE includes a orocedure PRINTER which
queries the user apout the printer and makes aporooriate

marain adjustments,

63

The actual printing process is carried naut in two

steos, In the first steo, the format commands within the
buffer are orocessed and the reauisite characters, e.g.

blanks for margins or carriage returns and line feeds for
line and paraaraph markers, along with text characters are
written to a user=soecified output file. This output file

contains only text characters, i.e. blanks, alohabetic,

numeric and socecial character data, and carriaqge returns
and line feeds. The second step of the printing process
must be done outside of SCOPE execution and is accomolisned
using the Shell command "cat filename.ollor" (23], Unless
multiole copies are being made, this method wastes
secondary storage and should be changed before a oroduction
status is achieved. A direct one=sten listing qQeneration

is more efficient,

L. SCRFEEM DISPLAY VICE LISTING

Although the desian called for an exact duplicate of
the final hardcopy output on the screen, that is not the
case in this imolementation., There were several reasons
for this desian deoarture. Figure 4=8 is a diaaram of the
CRT Screen Lavout. Since the area of the screen available
for the disolay of text is limited (only 21 lYines here),
double=spacina onlv allows the user to see a small segment
of text (11 lines). B8Better use of the screen occurs when
the text is sinale=spaced (21 lines of text are then

displayed). Fiaqures 4=9 and 4«10 jllustrate this point.

64

The screen Adepiction also does not show adjusted lines of
text, Mappina the cursor to the buffer contents becomes
much more difficult and reaquires the maintenance of
information ahout each displayed line if wraparound and
other features are continued in their present form, The
too and bottom marains which include the runnina header and
footer and page numher do not appear on the screen,
Finally, the reoresentation of underlinina is difficult
because the underline character overwrites the text

character at the same position,

65

V. FOLLOW=ON ANORK AND ENHANCEMENTS

Although the SCOPE svstem was used in the production of
this thesis, more implementation and testina must be
carried out before the system is ready for release to
general users., The SCOPE program contains untested code
segments, e.a. ADJUSTLN., Sevaral important editing
features reaquire imolementation. The COPY feature has not
been fully tested., MOVE has nmnot been implemented. The
COPY, MOVE and XTRACTFILE features need to carefully check
the format specifications in effect at the original segment
location. This may mean qoina back to the beainnina of the
file and checking all the format commands between the
beginning and the start of the text being acted on. The
LOCATE feature to do vattern searches can be imolemented
using the ataorithm in reference [3]. To be successful,
LOCATE must identify a oattern that has embedded format
commands. REPLACE will use LOCATE to find the patterns to
be replaced,

Manvy of the FORMAT specifications are currently fixed
within the orogram and cannot be modified directlv by the
user. FORMAT command sequences were desiqned but not
imolemented for commands reauiring arquments. In addition, j

table=handling and footnote mechanisms must be comoleted.

The adjusting of text must be implemented for hardcopy

66

T T N AN e U N, < N 2o

[4

|

orintouts. Running headers and footers should be added,

Upon completion of the implementation, systematic
testing of the SCOPE system should be conducted. A user=
oriented SCOPF Manual should be be develooed, A UNIX Shell
prooram should be developed for system initialization and
termination. This orogram would handle the setting of the
terminal stty ootions and initiate execution.

Once in a production mode, "bugs" uncovered by the
users will have to he corrected. Surveys of SCOPE ysers
should be conducted to retermine suqgestions for stream=
linina oromptina and command sequences, overcomina the most
common user errors, and enhancing the system., An
efficiencv analysis, usina orofiles, should be conducted to
determine the most suitable areas of code for ootimization.

This system is intended for use in the oreparation of
oroarams as well as documents, but so far no work has been
done in that area. The format commands, beina control
codes, will have to be masked out or processed before a
SCQPE file can be used as input to any compiler.

There are many possibilities for system enhancement,
SETMARKER could be expanded tc allow the user to set other
markers within the file to pinpoint special locations. The
adjusting of text lines on the screen and the associated
mapping to successfully handle the extra embedded blanks
would be a worthy project. Underlininag could be

represented on the screen as another line of blanks and "="

PO TP PEP)

B = Ol

SRR TR

characters underneath the required oostion,

The page conceot on the screen where the paae marqgins
are actually shown delimited on the screen with the "!"
character down each side for instance and the top and
bottom of the page indicated by dashes ("=") across the
screen could he introduced. In this manner the screen |

pecomes a more exact copy of the final output document,

Carryinae this further, the paace scrolling mechanmism would
not only scroll throuah one hard copry eauivalent of a page
but allow the user to request 3 particular paae bv number,

An UNDO command allnawina the user to easily recover
from his last action might be helnful. Another valuable
feature would be the provision of a document index
containing oertinent information about the document such as
its title, date of last undate, size, etc. This index
would be readily accessible to the user from the command
level. The introduction of a macro=processina capability
would be another possibility for enhancement, Finally,
common document formats could pe stored as templates to be
easily accessible to the user,

This desiagn could be imnlemented on other svstems, The
INTEL-based 8080/Z-80 microprocessors are prime candidates
using the new PL/T compiler by Digital Research., Another
candidate for SCOPE implementation is the [B8M svstem
scheduled to be installed at the W. R. Church Computer

Center in the fall of 1980,

68

VI. CONCLUSIONS

The design criteria for a "better" text processing
system were discussed and a desian was developed. This
design was based unon an examination of currently available
systems and a review of the design criteria set forth by
recognized desianers such as Kernighan and Plaugher and
Xerox personnel, SCOPE's screen orientation, interactive
nature and intearation of services are the keys to this
petter desian. The implementation demonstrates the
feasibility and value of such a comprehensive system., [t
is hooed that the design criteria presented here can serve
3s a quide in the develooment, evaluation and selection of

commercial text processing systems, as well as presenting a

basis for the design of new text handling svstems,

O E ECs+ >

@ O&y v 0L
L

o ce we o me ee we ce e v

E

¢

>~

(%]

>

e co me ce e me e e o e

o

e e e.h e.r e ce e e wa an

G L I — = E - &

'Y

- A e on e es we oo con se

a

- on @0 ** oo oo av o= *e o

c

SCOPE Buffer Layout
70

APPENDIX A

c

represents the cursor position.

SCOPE Svstem,

T.‘nseﬂd

tat

Fiaqure 4-1,

e mn e o cn wa o

NSERT AREA}

where

@G C VL QOO
Qo Y D - C VO x

o

CE

L Os+rvse L 0L

'

L X R L R R N R N X A N A X NN N X N N X X N X X X ¥ N N ¥ R X X ¥ N KX N X N X ¥ ¥ X ¥ X ¥ X X J
the above buffer contents would apoear on the screen as:

o L O~ CC x

cursor

begin {SCOPE DRIVER/MAINLINE}

initialize variables;
terminal’}
orinter;
setdefaults;
set formatcmds:
clearscreen;
reoeat
prompt;
userinput(cmd);
if valid cmd then
case cmd of
‘e': edit;

?ormati

-
-~
-
..

1 listorocessed?

'a': stoo = true;
‘r't readraw?’
'w': writeraws

end {case)
else {not a valid command}
errormsaq
until stoo?’

end,

Fiqure 4-2. SCOPE Driver

71

Method T

!
!

Method 11

cr
1y

'h.
]]

Move uo 1| line, staying in same column
or the one closest to the left,

Move riaght 1 column, at end of line aqo
to first char of next line down.

Move down 1t line, staying in same co!
or the one closest on the right,

Move left 1 column, if beginning of line
ao to last char of previous line,

Move to first char of next line down,
Scrollup, move un approximately 3/4°'s
of the screen with 5 lines of overlap.
Scrolldown, move down aooroximately 3/4's
of the screen with S lines of overlao.
Go to the beqinnina of the file,
Go to the end of the file.

Fioure 4=3, Cursor Movement

72

Command
Syntax

A

Fiqure 4=4,

Command Function

Agdfile
cooy
Cursor Movement
delete
insert
locate
move

qQuit
replace
setmarker
exchange

eXtractfile

SCOPE ENIT Commands

73

Decimal
ASCII
Code

O BN NS NN -

Command
Svntax

e
[4

m/n/#
h/hpf/‘;ﬂp"/‘
tab key

line feed key
i/’

1

carriage return
H/’,”

o

control p

m/t/%

.

s/t

t/4

u

m/V /4

X

contro) vy
control 2
b

n/b/¢

e

m/r/8
m/o/t

Formatting Command

Kevboarda

contro)

Adjust

Break

Center Line

UNUSED ([UNIX end of file)
Page Eject

Fill

Page Number Marain
Running Header/Footer
Tab

UNUSED ([UNIX * ']
Indent

Line Spacing

Line Marker

Page Number

Fill Of¢¢f

Paragraoh Marker

Too Marain

Right Justify Line
Skio Lines

Title

Underline

available

Left Margin

Adjust Off

Beginning of text Marker
End of text Marker
Begin Delimiter Marker
Bottom Marqgin

End Nelimiter Marker
Right Marain
Paragraoh Margin

Fiqure 4=5, SCOPE FORMAT Command Structure

T4

Cocde

S NS X C<C- VDD VO2 LM XC—IOMNMNMOOO® ™

DEFAULT/STANDARD FORMAT MENU

Rottom Marain 9 Ins =1 t/2"
Left Marqgin colld =1 174"
Paace No. Marqin 6 Ins = 1"
Paragraph Marqgin coll17 = Letmargin+d
Riaht Marqgin col72 = 1 (/74"

Too Margin b lns = 1"

Note: 10 chars/inch and 6 Ins/inch.

On Screen On Listing
Adjust Mode off on
Fill Mode on on
LineSoacing sinale double
Max lines 21 66
Window Size 21 NZA
Tab 4 4

Fiqure 4=6. SCOPE FORMAT Menu(Nefault)

Page

DDA S

CURRENT FORMAT MENUY

Rottom Marain 6 Ins
Left Margin col B
Page No. Marain 3 Ins
Paraaraoh Marqgin coll?
Riaht Marain col72
Top Marain 6 Ins

Mote: 10 chars/inch and 6 Ins/inch.

On Screen On Listing Page

i Adjust Mode off off

b Fill Moade off off
LineSpacina double doubtle
Max lines 21 66
Window Size 10 N/A
Tab R 8

Figure 4=7, SCOPE FORMAT Menu(Current)

Y S

e

e=!columns
‘.
L]
il
nt
e!
s!

1 | 1 4 7 8
l....5...00..3...7..II//.._Ijtoatﬂl..//.l..IZOQCCCQOO
L P C R 3

LI YT PP Y SR Y A LR L L LXK T L L X L L X X X X X X X & K & 2 J

! K
2 Messaace Area
3 ‘

12 Text Area

—
&

LTI R LT T RS R R YR L LA L L LR R L EY T X L L L E A & A X L 2 X J

Left Marain Settina
Paraaraoh Margin Setting
Center of the Screen
Riaht Margin Setting
Last Column

MO O
wawnuu
v Vv

imwawnuan
v

v Vv

Figure 4=8, CRT Screen Layout

17

EDIT MODE aluit A)ddfile X)tractfile Clursormove
clooy d)elete i)nsert l)ocate m)ove
r)eplace sletmarker x)chanqge
Although the design called for an exact duplicate of

the final hardcooy output on the screen, that is not the
case in this imolementation. There were severa)l reasons
for this desian departure., Figure 4=8 is a diaaram of the
CRT Screen Layout. Since the area of the screen availahle
for the disolay of text is limited (only 21 lines here).,
double=spacina only allows the user to see a small seament
of text (11 lines). Retter use of the screen occurs when
the text is singlle~-scaced (21 Yines of text are then
disolayed. Figures 4=9 and 4=10 illustrate this point.
The screen depiction also does not show adjusted ltines of
text., Mapoing the cursor to the buffer contents becomes
much more difficult and requires the maintenance of
information about each disolaved line if wraparound and
othar features are continued in their present form, The
top and bottom margins which include the runnung header and
footer and oaae number do not apobear on the Screen,
Finally, the representation of underlinina is difficult
because the underline character overwrites the text
character at the same position,

Figqure 4=9, Sample SCOPE Screen Display #1

78

EDIT MODE a)uit A)dddfile X)tractfile Clursormove

clopy d)eletes i)nsert))ocate m)ove

r)eplace s)etmarker x)chanaqe

Although the desian called for an exact duplicate of

the final hardcopy output on the screen, that is not the
case in this implementation., There were several reasons
for this desian departure. Figure 4-8 is a diaaram of the
CRT Screen Layout. Since the area of the screen available
for the disnlay of text is limited (only 21 lines herel,
double=spacinao only allows the user to see a small segment
of text (11 lines)., Retter use of the sScreen occurs when
the text is sinalle=soaced (21 lines of text are then

disolayed. Figures 49 and 4-10 illustrate this point.

The screen depiction also does not show adjusted lines of

Fiqure 4=10, Samole SCOPE Screen Disnlay %2

79

" - " 2

P RE- WA~

116 Jups W S ibany Y
U T A e b

R s

APPENDIX B

SCO0PE

SCOPE, SCreen-0Oriented Processor and Fditor, is an
interactive, inteqrated, screen=oriented, context=- oriented
text orocessing system. [t performs the functions of both
a text editor and formatter. The following paragraohs
provide a brief descriotion of the intended SCUOPE System,

Ahile using SCOPE, the file that is edited or formatted
is displaved on the CRT screen which acts as a "window" on
the text. This file exists in a stream format, i.e., the
file is a continuous stream of character data. In this
character stream, the lines of text are defined by a line
marker or a paragraoh marker which preceeds each line or
paragraoh resocectively., Along with the text and markers
the stream also contains format commands which cannot be
confused with either the text or markers.

The cursor oosition on the screen serves to pinooint
the text to be orocessed, Cursor movement occurs in one of
four directions; down and right for forward movement and up
and left for backward movement. Movement throuah the body
of text is accomplished character by character, iline by
line, a screenful of lines at a time, or by a page of lines
where a oage reflects the hardcopy orintout length. Rapid
movement through the text is performed usina commands, e.Qo.

‘D' for scrolldown, which allows the user to move forward

80

[TN

-

throuah the equiv-lent of 3/4's of the screen,

Durina the editina session, text is inserted in free
format with full=word wraocaround at the end of each line.
The svystem worries about =ach end of line thereby freeing
the user to concentrate only upon inputina as rapidly as
possible. Rlocks of text may be coopied from one olace to
another within the same file and to another file, Deleted
material is not removed from the buffer until the user
positively acknowledges this action thus preventing some
unintentional errors. Context searches are also available,
Table construction is facilitated by the use of tabs. The
format soecifications are in effect during the edit
process.,

In the formattina mode the user immediately sees the
orocessed results upon the CRT screen, The cursor oosition
aqain determines where the formatting action is to occur.
Menus are orovided to the user for the selection of desired
formattina specifications. There is a default menu that
orovides the user with a reasonable page lavout as defined
by the NPS Thesis Manual. Hardcooy printouts of the
document mav be generated on various models of printers.
Centering, riaht justification, i.e. alignment alona the
right marain, underlining, runnina headers and footers and

footnotina will be oraovided.

81

e —— s G Sl A A gt e i SN ~ = o v

SCOPE Execution Commands

X stty raw =echo n)
%X ox scope {does not aopear on Screen}

‘ enter the terminal tyoe as follows:
- 1 for adm=3a, 2 for dmiS20, 3 for dm2500
>

print listina on UNIX printer==y or n?
>

COMMAND MODE > . _ ‘
eldit flormat 1)istino aluit rleadfile w)ritefile

' SCOPE Comoilation Commands

% oi =p filename.o {to compile source}
-2 {to generate profile counters)
- {necessary to turn off stmt
% mv obj scope {to correctly name the object
modulwe}
%2 oxp =j2 filename,o {orovides formatted pam listing)
% oxp =2 filename.o {to generate profile}

1imit counter}

— e

Be

orogram scope(inout, outout, infile, outfile);
(x abbreviations used in SCOPE inmn alohabetical order...

adde ¢ address
b, beg ¢ beainning
b ¢ bottom
blk : blank
buf ¢ buffer
c ! center
chs char ¢ character
chg : chanqge
cmd ¢ command
cnt, entr ¢ count, counter]
col : column]
const T constant
convert : convert
cre ¢ t carriaqe return
D t scrolldown
del ! delete 1
dir ¢ direction
e : end
in ¢ inout
ir, indx ! index
init t initialize, initialization
inc t increment
ins ¢ insert
imo ¢ jump
1 Tt left
1f 2 line feed
Im ¢t tine marker
In :t line
locn ¢ location
m : marker
max ¢ maximum .
msg T messaqe
neg $ negative
nors num H ngmber
o : of
o, Dara t oaragraph
pa ! paaqe
pm ¢ oaraaraoh marker
ons ! positive
[¢ right
t : top, text
u ¢ under, uo
U : scrollup
var ¢ variable

end abbreviations *)

81

const
overlap = S; (*no of Ins to be recopied during scrollingx)
buflimit = 300002
Imaxchars = 147 (*x1imit on user inout of lona length#*)
smaxchars = 4; (*1imit on user inmput of short lenqgtht)
msalns = 3; (*no. of lines in msa areax)
linmel
line?d
lined
neql
posl
zero
col8
coli?
col2d

.
’
-
14
3
’
»
r
.
’

+
0
8

1
2
3
1
1
;
1
2

2
4

e we

84

var

emotybuf, fileread, namingfile, stoo! boolean;
fi11l, markersok, alisting: boolean;
begmset, endmset, newmset: boolean?

ch, ecmdchar, eotchar, bell, botchar, down: char;
accept, erase, quit, om, Im, 1¢, cr, clear: char;
bm, em, nm, inchar, home, left, uo, right: char;
centerlinch, underlnch, titlech, ogejectch: char;
indentch, headerch, footerch, fillch, rubout: char;
pgnumch, filloffch, skiolnch, breakch: char;
rtjustifych, Imarginch, rmarainch, tabch?: char:
tmarqinch, bmarginch, omarginch, pamarginch: char;
adjustch, adjustoffch, Inspacinach: char;

{escape, ruboutichar; don't work in raw mode}

buffer: arrav [l..buflimit] of char;
cmd: array [t..smaxchars) of char;
name: array [l..1maxchars]) of char?’
footbuf: array (1..80] of char;
headbuf: array [(1..80) of char;
underlinbuf: array (1..80]1 of char;

infile, outfile: text;

cmdset, edcmdset, cursormoveset: set of char’
{cursormoveset is only for documentation purooses
because this Pascal doesn't allow chr defined
variables in a set to be recoanized oroperly.}

ny bufindx, insend, insbeaq, numher?: intener;
rowno, colno, lastcol, lastlin, pageno: integer;
termno, blnoffset, tinoffset, rmargin: inteqger:
bmargin, Imargin, mgmarqin, omarqin: integer’
tmarain, maxpglns, Inspacing: inteaer;

delbeg, delend, j, i, beatext: inteqger;’
beaindax, endindx, newindx?! integer;

charcnt, centerofpg, tab, tabcnt! integer;

blkloens: array [1..20) of integer;
tablocns: array [1..20] of inteqer;

8S

function bot: boolean;

(+ this func indicates that the beainning of
the text has been reached when it is true,x)

beqin (* bot *)
bot := ch = botchar
end; (* bot =)

function boln: boolean:

(xthis func indicates that the char (ch) read
from the buffer or file is the beqginning of
line marker, i.e. Im, *)

beqgin (* boln x)
boln := ch = Im
end; (* boln x)

function boo?!: boolean;

(xthis fune indicates that the char (ch) read
from the buffer or file is the beginning of
paraagrapk marker, j.e. Dm .*)

begin (x boo)
hoo = ¢ch = pm
end: (x bop «)

function break: boolean;
(*this function indicates that the char (ch)
read from the huffer or file is the break char.*)

begin (*x break x)
break := ch = breakch
end: (* break x)

function ect?!: boolean;? ;

(xthis func is analoqous to the eof and eoln
funcs and indicates the end of the text has
been reached.*)]

begin (x eot *)
eot = ¢ch = eotchar
end/; (* eot *)

86

function formatchar: boolean: _
(*thig func is true when ch is a format
command or part of one.*)

begin (x formatchar *)

if (ord(ch) >= 0) and (ord(ch) <= 31) then
formatchar := true
else if ¢ch in ('1', '2', '3', '4', 'S'] then begin
{ check for numeric part of format commands }
ch = getbufchar(=-1);
formatchar 22 ¢ch in [(titlech, Ynspacinachl?;
ch = getbufchar(+1)
end;
formatchar := false
end; (x formatchar *)

function textchar: boolean;

(xthis func is true when ch is a valid

disolayable text char only, Line/para

markers and format commands cause a false

value to be returned. *)

begin (x textchar =)
textchar := (ord(ch) >= 32) and (ord(ch) <= 126)

(* textchar *)

end;

b

function getbufchar(inc: integer): char;

(xthis func aets a char from the buffer. It
is either the oredecessor, same or successor
to the last char returned.*)

(* inc has the values +1,0,=1,*)

const
neal = =1;
zero = 07
posl = +1;
begin (* getbufchar =)
case inc of
negl?
beain »
bufferlinsend] := bufferfbufindxl;
insend = insend = 17
bufindx := bufindx = 1;
insbeg = insbeg = 1
end?
2ero? .
rnultl; (*» no chanae within the buffer x)
oosli:
beain
bufindx = bufindx + 1;
insbeg := insbeg + 13
insend = insend + 1}
buffer{bufindxl s bufferlinsend)
end

end; (* case *)
getbufchar := bufferbufindx])
end; (x getbufchar *)

function ITnlenath: integer;

(xthis func counts the chars, including

spaces w/in the current line of the buffer and
expects the huffer position to be at Im or pom.t)

var
cnt: inteqger:

begin (*x Inlenath *)
cnt = «1;]
repeat
ch := aetbufchar(+1); 1
cnt = ¢cnt + 1

until newline or eot;
Inlength = cnt’
{returr to beginning of line}

repeat
ch = gethufchar(=1);
cnt = cnt - |
until ent < 0
end; (x Inlength *)

a9

function newline: boolean;

(xthis func is true whenever an Im, om,
or format cmd inndicatina a new line is
encountered.)

beqgin (* newline x)
newline 1= ch in [(breakch, pm, 1m, titlech,
end’ (* newline #)

function centert: integer’
(xthis func returns the startina oposition
for the centerina of a line.*x)

begin (* center *)
center := centerofog = Inlenath div 2
end; {(* center *)

ogejectch]

e L e

i i . R D
: b o7 e

orocedure terminal;

(* this procedure sets the terminal constants, i.,e.
ascii codes based on the user inout terminal type.*)

var
ans: char?’
orocedure adm3a;

(*xthis proc assians the unique adm=3a terminal codes,.*)

hegin (* adm3a x)
home 33 chr(30);
clear = chpr(26);
up = che(1l);
right = che(12)
end’ (x adm3a »)

procedure dmi1520;
(xthis proc assigns the unique dm=1520 terminal codes.*)

beagin {x dml1S20 =)
home $= chr(19);
clear = chr(12);
uo 2 chr(31)2
right := chr(28)
end’ (x dm1S20 =*)

orocedure dm2S00;
(* this oroc assigns the unique dm=2500 terminal codes.*)

begin (x dm2S00 =)
home := chr(2):
clear = chr(30);
up = chr(26);
right := chr(28)
end’ (* dm2S00 =)

91

- — E oA M A

e i

procedure termcodes:

(*thig proc assians the ascii terminal codes
that are common to all the terminals used w/
this system,#*)

lastcol
lastln = 2
bell = cher(
er 2= chr(13):

1f ¢= che(10); (% Aown %)

down 12 ¢cher(32);

(* note that 1f/down aopears as ' ' on UNIX =)
rubout 1= chr(127)

{rubout from terminal doesn't work in raw mode}
{escape := chr(27): doesn't work in raw mode}
left 2= chr(8);
accept := chr(1): (=2cntr)l a *)
erase := chr(S); (*cnterl e *)
auit 2= cher(17) (*entrl a *)

end; (* termcodes *)

L becin (» termcodes *)

beain

write(chr(26),
write('
write(ehr(13),
write('l
write(echr(13),
repeat
read(ans)

until (ans = 't') or (ans

termcodes;
case ans of
1
beain
adm3a;
termno

dm1520;
termno =

end;

'3!:

beain
adm2500;
termno :=

end

end (* case *)
end’:

che(l?2),

chr(10))

for adm=3a,

chr(10),

2

3

-
[4

2

>

'2') or (ans

(* terminal

chr(30)):
enter the terminal

*)

type as follows

for dm1520, 3

'

(x terminal

for dm2500°');

'3');

*)

|
|

orocegdure setdefaults;
(*this proc sets the default values for
a standard 8 1/2% x 11" gheet of caoer

B N R S SR T

e.d. marains,etc.*)
beain (* setdefaults *)
fill = true’
bmargin = 93 (x| 1/2" x)
Imargin 2= 137 (* 1 174" =x)
3 pgmargin = 67 (% 1" x)
4 omarqin := 17; (* 4 spaces \n fm Imarqgin %)
rmarqgin 3 727 (* 1 1/4" x)
tmarqin = 65 (x 1% +)
maxpalns := 667
3 Inspacing := 2}
i centerofog := (rmarqgin = Imargin) div 2 + Ymarain;

r

tab = 43
n = 1;

reoeat

tablocnsin] :=

n = n ¢+ 1
until (n =

ends

.

T s 2w Bt e S ey P - -

Imargin + 1 + tab * n;

21) or (tap * n >= AD)

(* setdefaults *)

94

orocedure setformatcmds; .
(*this proc assians the ascii codes for the
format cmds and markers used w/in this system=*)

begin (* setformatcmeds %)

adijustch = chr(1); (* cntrl a %1

breakch = chr(2): (* cntrl b *)

centerinch := chr(3); (* cntrl ¢ *)

tmarginch = chr(d); (* cntr) 4 =)

pgejectch = chr(S); (* cntrl e *)

fillch 2= chr(b6): (*x cntrl f x)

pgmarginch = chr(7); {(*x cntrl q *)

headerch := echr(8); (*x cntrl h *)
tabeh := chr(9); (% cntrl § =)
indentch = chr(11); (* cntrl k =x)
Inspacinach := cher(l12); (%2 ¢cntr) 1 =)
Im := chr(13); (*1ine marker = crt*)
pgnumch = chr(l14); (*x cntrl n =)
filloffch 2= chrflS): (*x cntr)l o =)
om := chr(16); (*para marker = cntrl o)
footerch = chr(17): (* cntrl A =
rtjustifvch := chr(1R): (*x cntrl r *)
skiplnch = ¢che(19)F (*x cntrl 4 <)
titlech = chr(20); (% crtr) t =)
underlnch = chr(21): (2 crtr)l u *)
nn = chr(22)7 (*new markerscntrl y=)
Imarainch 2= chr(23)7 (* cntrl w *)
adjustoffch = chr(24); (* cntrl x *)
botchar = chr(25); (* cntr) y %)
eotchar := chr(26): (% cntrl 2z %)
bm = chr(27); (*begin marker=cntrl (#*)
bmarginch := chr(28); (x cntr)l \)
em = ¢hr(29); (*end marker=cntr) 1x)
rmarainch = ¢chr(30); (* varies *)
pmarqginch = chr(31) (% varias =x)

end’ (x setformatcmds *)

b+

95

QAR s 70 s W i :

%

AD-A092 180 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
DESIGN AND IMPLEMENTATION OF AN INTEGRATED SCREEN-ORIENTED TEXT~=ETC(
JUN 80 L A TALMAGE

UNCLASSIF IE
9=}

ks j28 f2s
floiy
———— E I;E"’_ mg
iy, = =
<2

v =

N
O
N

s,

L
|

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

orocedure xyaddr(col, row: inteqer);

(*this proc initiates absolute x=-y addressina on
the crt screen for adm=3a and dm=1520 terminals,
termnum is 1 for the adm=3a and 2 for the dm=1520,
col is the actual column number on the screen

from | to 80 where the display is to occur,

row is the actual row number on the screen

from | to 24 where the disolay is to occur.x)

begin . (* xyaddr *)
case termno of
1: (» adm=3a x)
write(ehr(27),chr(b61),chr(rowt3l),chr(col+31)):
(# 31 is the offsat for ea, value to set the
correct ascii code.*)
2: (* dAm=1S20 =)
write(eher(30), chrlcol + 31), chr(row ¢+ 31)):
3
begin (* dm=2500 *)
(rthe offsets vary in setting the correct ascii coder)
1f col <= 32 then
col 23 ¢col + 95
else if (col >= 33) and (col <= 64) then
col = col ¢+ 63
else if (col >= 65) and (col <= 80) then
col = col ¢+ 31;
write(cher(12), cherlcol), chrlrow + 95))
end

end (* case *»)
end; (* xyadder ®)

N

96

|
|

procedure suserinput(nochars: integer)?

(*this proc gets nochars of user input. A
&cr> terminates short user input.*x)

begin (x suserinout
i =17
repeat
read(inchar);
it inchar = erase then begin
write(left, ' ', left);
i =2 4di=1
end else begin
itf inchar <> cr then begin
write(inchar);
if i <= smaxchars then
emd{il = inchar;}
i =i ¢+ 1
end
end
until (inchar = cr) or (i > smaxchars ¢+ 1)}
if i €= nochars then
for n 2= § to smaxchars do
emd(n) 2= '
else
for n 2= nochars + 1 to smaxchars do
emdin) = '
end; (x suserinout

97

*)

%)

orocedure luserinput(nochars?: inteacer)?

(xchis proc gets nochars of user input. A
€cr> terminates long user inoyt.x)

beqgin (x luserinout +)
1 = 1;
repeat
read(inchar);
it (inchar = erase) and (i > 1) then begin
write(left, ' ', left):
f 2= i « 1
end else begin
itf inchar <> cr then begin
write(inchar);
itf i €= Imaxchars then begin
namelil := inchar;
i 2= i ¢+ 1
end
end
end
until (inchar = ¢cr) or (i > Imaxchars + 1)}
if namingfile then
(acheck for .p in filename*)
it (nameli = 21 <> ',') or (nameli = |1 <> 'p') then begin
it i <= nochars = 1 then beqgin
nameli) 2= *,.°*;
nameli + 13 2= 'o';
i =i +2
end else begin

name [nochars = 1] :3 ',*;
name fnochars) := ‘p! i
end
end:

if i <= nochars then |
for n $=2 §i to Imaxchars do :

nameln) = ' i

else
for n 2= nochars ¢ 1t to Imaxchars do
name(n) := ' !
end/ (x luserinput t)

procedure convrtnum(i: inteqger; var num: integer);
(xthis praoc converts the char number in the

string startinag at index i into an inteqer value,*)
function ynit(charnot char): inteqer;

(xthis func returns the unit inteqer value
of the char number,t)

begin (* unit =)
unit = ord(charno) = ord('0') .
end: (x unit =)
begin (* convrtnum &)
n = 03
reoeat

n = n +1
until emdii ¢ n} = * *;
case n of
12
num 2= unitlemdlil)?
22
num 2= unit(cmd(i}) » 10 + unit(emdii ¢+ 1});
32
numssunit(emd(i1)#100+unitCemdli+1})*x10+unit(cmdliel))
end (»x case »)

end’ (* convrtnum =)

99

i
i
!
i

[S—————]

procedure blankin(rownum: inteaer);

ol B s

(r2this proc causes a line of blanks to be
printed extending from the left screen j
boundary to the 75th col on the riaht so
that the bell doesn't ring each time.*)

begin (* blankin #%)
xyaddr(l, rownum):
write(' ')
write(® S
write(' ')

end; (x blankln *)

procedure msqgclear;

(*xthis pro¢ blanks out the first 3 lines of
the crt screen, i.e, the msqg area., *)

beqgin (* msaclear *)
blankin()inel)?
blankin()line2)?
blankin(line3)

end; (* msaclear =)

procedure pause’

(*this proc makes the user aware of error msas
and orompts by requiring his interaction w/ the
system.*)

var
anss char;

begin (* pause *)
xyadder(col24, 1inel3):
write(' <space> to continue ')}
repeat
| read(ans)
‘ unti{) ans = ' °
end? (* pause =)

100

XL

procedure orompt(promptnum: inteqer)?’

(xthis proc writes out the prompt indicated by
promotnum in the msg area on the crt screen, &)

begin (x orompt =)
msqgclear;
xyaddr(colt2, linet);
case promptnum of
1
beqgin i)
write('EDIT MODE Qluit A)ddfile X)tractfilte
g write('Clursormove’);
| xyaddr(col12, linel):
» write('clooy dlelete i)nsert 1)ocate mlove'):
' xyaddr(coll2, linel);
write('rlenlace s)etmarker x)change');
xyaddr{colino, rowno)
[! end;
22 -
begin
write('INSERT MODE'):
xyadder(colB, 1ined);
write('ctr)! a to accept; cterl! e to erase’ '):
write('ctrl a to quit')
end’
3:
beqgin
write('FORMAT MQODE')
end;
4:
begin
write(*COMMAND MQODE >4);
xyaddr(coiB, 1inel);
write('e)dit flormat 1)istina aluit *');
write('rleadfile wiritefile');
xyaddr(col8 + 22, linel)
end;
S
beqin
E write('DELETE MODE');
! xyaddr(col®, 1ine2);
[write('ctr! a to accent; ctr) a to quit')
end;

63
begin

write('COPY MQODE')
end;

101

')

[V

pes——

7:
beqgin
write('MOVE MODE')
end;
8:
beqgin
write('orocessing completed.'):;
xyaddr(coli8, line2); o
write('delete markers set in buffer==y or n ?2');
xyaddr(colB, 1inel);
write('>')
end;?
10:
begin])
write('buffer full (11'):
xyadder(col8, linel):
write('cnterl adiccept or cntrl qQluit ?')
end;
11
beqin _
write('does file alreadvy exist==y or n 2');
xyaddr(col8, lined);
write('>')
end?
12
beqgin
write('enter initial oage no. followed by <cr>');
xyaddr(colB8, line2);
write('>')
end;
13:
beain ‘
write('orint listing on UNIX orinter~=y or n 2')?
xyaddr(coll2, Vine?):
write('>')
end;’
142 _
write('at end of file');
1S5
write('listing being produced'):;
162
beain
write('SETMARKER MODE Rleqin E)nd Ndlewloen'):
xyaddr(coll2 ¢ 2, Vline?):
write('move cursor then cntrl s to setmarker ');
write('entrl g to aquit'):
xyaddr(col8, 1inel);
write('text between/including B) and E) chars ')}
write('is nlaced before the cursor,')
end;

7
i
i
h
i
i

e el "

17
begin
write('LOCATE MODE')
end;
18:
beqgin
write('REPLACE MODE')
end:
19
write('at beainning of file');
202
write('XCHANGE MODE');
21
write(*Addfile');
222
write(*Xtractfile');
23
beqgin :
write('Cursor Movement arrows');
j xyaddr(colB, line2); 4
write('<cr> Ulscrollup Olscrolidown plage')?

! xyaddr(col8, 1ineld);
write('bleginnina of file e)nd of file')
end
! end (* case =) !
' end’

(% promot =)

adsaifiannal

103

procedure errormsgimsgnum: inteqer);

(*xthis proc prints out the error msa indicated
by msgnum in the msg area on the crt screen,.t)

begin (» errormsa *)
write(betll);
msgclear:
xyaddr(colll, linel);
case msgnum of
1¢
write('invalid command')?;
23
begin _
write('moving the cursor is meaninqgless w/ ');
write('no text oresent in the buffer.')
end; i

write('r)eadfile before entering EDIT MODE'):
43
write('invalid EDIT command');

S:)
write('r)eadfile before entering FORMAT MQODE'):
62
write('invalid INSERT command');
7:

write('all inserted text has been erased’'):

B:
write('invalid DELETE command');
9:
beain

write('deletion direction must be consistent, i.e.');

xyaddr(colB, 1inel):;

write('go right and down or go left and up.')
end;
10

write('invalid SETMARKER command');
t1:

write('begin marker already set');
12

write('end marker already set');
13:

write('new locn marker already set');

104

143 .
write('begin marker must occur before end marker');
15

write('new locn cannot be located in the delimited text');

16;rite('beqin marker has not been set')’

l.,:u'ite('er\d marker has not been set');

ls;rite('neu locn marker has not been set');
19;rite('insufficient buffer space for copy to occur');
2o;rite('p|ease indicate the title tvpe==i, 2, 3, 4');
21;rite('not implemented')?

?Zarite(’r)eadfile before entering SETMARKER mode');
as;rite('buffer fulltitits?)

end; (x case *)
pause

(x errormsg *)

105

procedure orinter;
(=this proc makes necessSary adjustments to
margins for the UNIX printer,»)

begin
reoeat
prompt (13);
suserinput (1)

(* orinter *)

until C(cmdll} = *y*') or (cmd(l} = °*n');

it emd(l) = 'y' then begin
(*UNIX printer's driver allows
to write only 63 lines to a ng
tinoffset := 2; (* 2 In at

binoffset := 2 (* 2 Ins at
end else begin
tinoffset := 0}
binoffset = 0
end
end?

the user
vice 66,.*)
the too =)
the bottomx)

(x printer *)

106

B i e e R YT Y e e

procedure aetnumericmd;)
(xthis proc aets the numeric part of a format
command and converts it to an integer.*)

beain (*x getnumericmd *)
i o= 07
repeast
i o+ 13
ch = getbufchar(+1):;
emd{i] := ch
until break;
cmd(t) = ' '
conyrtnum(i = 1, number)
end; (* getnumericmd =)

procedure jmotomarker(markerchar: char; inc: integer);
(*this proc moves backward or forward thru the buffer
until the marker, e.q. bot is reached. 1inc indicates
the direction of the move, i.e. tiz=>forward and
=i2s»backward.x)

begin (* jmptomarker x)
ch = qetbufchar(0)?
if ¢ch <> markerchar then
repeat
ch := qgetbufchar(inc)
until ¢h = markerchar
end’ (*x jmotomarker *)

107

procedure filename(calledby: char);’

(*this proc reauests user input of the name of

the file to be processed. Up to 14 chars, including
the *'.p' for a PASCAL file, consisting of alpha and
numeri¢c chars and the period are allowed,*)

begin (r filename *)
msqgclear;
xyaddr(coll2, linel):

case calledby of
.A':
write('name the file to be added to the buffer,');
l‘0=
write('name the listing file,');
[] LY

r
write('name the rawfile to be read into the buffer,');

'H': 4
write('name the raw file saving the buffer contents,');

lxl:

write('name the file to be eXtracted from the buffer,')
end; {case}
xyaddrlcol8, line2);
write{(’enter the filename.p, up to 180 chars, ');
write('followed by <cr>');
xyaddr{colB, linel3);
write('>');
namingfile := true;’
Tuserinout(imaxchars);
namingfile := false;

write('the filename is ', name):
pause
end; (x filename *)

108

function startin(nolines: integer): char?’

(xthis func finds the beainning of the line to be
displayed by either backtracking or skipping forward
through the buffer by counting the number of line and
paragraph markers encountered and comparing this total
w/ the specified nolines, Startin returns an Im or om,
nolines values indicate the following:?

-n backward n line(s),

0 same line,

+1 forward n line(s). *)

begin (x startin »)

if nolines <= 0 then begin (* ao backwards *)
(» to find start of current line =)
ch := aetbufchar(0);
if not newline and not bot then
repeat
ch = getbufchar(~-1)
until! newline or bot
end;
if (nolines < 0) and not bot then
repeat
repeat
ch := getbufchar(=1)
until newline or bot:
nolines := nolines + 1|
until (nolines = 0) or bot

else if (nolines > 0) and not eot then

{ go forward }
repeat

repeat

ch := getbufchar(+l)

until newline or eot?

nolines := nolines = 1
until (nolines = 0) or eot:?

if bot then beain
reoeat
ch := getbufchar(+1l)
until newline
end else if eot then

repeat .
ch := getbufchar(=1)
until newline:?
startin = ¢ch
end; (* startin =)

procedure setcursor({nocol, nolines: inteqger)?

(*this proc maps the cursor col and row to the
correct position in the buffer, Nocol is the
col locn of the text char in the line of text.
See startin above for nolines description.*)

begin (x setcursor *)
ch := startin(nolines)’
it nocol = Imargin then beain
if boln then
colno = Imargin + |
else if bop then
colno :3 pmargin + 1
else if ch = tabch then
orocesstab’ .
(20t to Ist char in line in the buffer *)
repeat
ch = getbufchar(+1)
until textchar or eof
end else begin
if boln then
i 22 Imargin
else if bop then
§ = pmargin
else if ch = tabch then
i ¢= Imargin + tabs

repeat
ch := getbufchar(+1):
if textchar then
i =i+l
until (i = nocol) or newline or eoti
(it there are not enough chars in the line
then pt to the last one.*)
if newline or eot then
repeat
ch := cetbufchar(=1)
until textchar;
colno 3 i
end
end; (x setcursor *)

orocedure adjustin(incntr: inteqger);
(xthis proc inserts extra blanks in a 'n of words
80 that the last char nf the last word is on the !
right margin, Each In is divided into 2 oarts at ’
midworde. Jblkent and rblkent are the # of blanks
inserted to the left and right of midword. endblkent
is the total # of blanks to be inserted in the In,
blklocns indicates where w/in the 1n blanks are located.
inc is the offset in blkloecns due to orevious blank
insertion. lend is the blank position oreceding midword.x)
var

endblkent, i, inc, lblkent, rblkent: integer;

midword, wordcnt, Insize, lend: inteaer;

blklocns: array (1..201 of inteqger?

procedure cntwords:;
(*xthig proc counts the # of words in a 1n of text
and finds out where blanks may be inserted,.*)

begin (x cntwords =)
ch ¢= startin(=-1);
wordcnt = 0;
itz 13
if Insize > centerofng ¢+ 3 then begin
while i <= Insize do begin
ch := getbufchar(+});
if ¢ch = ' ' then begin
{check for 2 spaces toqether)
it (wordent>=1)andfblkloens {wordent]<>i=1) then beain
wordent = wordent + 1
blklocnstwordent) = i
end else if wordent < 1 then beain
wordent = 13
blklocns (1) = i

end
end;?
f:2=2i+1
end;
wordent = wordcnt + |

end
end; (* cntwords *)

e e

procedure leftside;
(*this proc adjusts the left half of the line
by inserting extra blanks to the left of midwordr)

begin (* leftside *)
i =13
ine 2= 0;
lend := Iplkent * (midword = 1)
ch 22 startin(0);
j 2= 17
reneat

ch := getbufchar(+l);
write(outfile, ch);
it (inc < Yend) and (iblkecnt > 0) then bhegin
1f } = blklocns (il then beqgin
t2 1 to Iblkent do begin
= j o+ 1
te(outfile, ' ')
i+ 1
inc 2= inc ¢+ Iblkcnt?
biklocns (il := plklocns{i]l + in¢c
end
end;
i s + 1
until inc >= lend _
end; (2 leftside *)

-

orocedure rtside;]
(xehig proc adjusts the riaht half of the line
by inserting extra blanks to the right of midwordx)

begin (* rtgide #)

i ¢2 midword?
repeat
ch := aetbufchar(+1);
write(outfile, ch);
it (i < wordent) and (rblkent > 0) thern begin
it j = blklocns(i) then beain
for n :2 1 to rblkent do begin
i ¢ j + 2
write(outfile, ' ')

end?
i 3= i ¢ 13
inc 2= inc + rblkent?
blklocns (i) := blkloenslil ¢+ inc
end
end’?
j 2= j + 1
; until j > Tnsize
end; (* ptside #)
begin (* adjustin =)

Insize 2= Inlenqth;
endblkent = rmargin = (Insize + Ymarqgin);
if endblkent > 0 then bheqin d
cntwords:
if wordent > 0 then beqin

if Incnter mod 2 = 0 then beain
Ibtkent := endblkent div (wordent = 1) ;
rotkent = Ihikent ¢ 17 !
midword := wordent+(lblkentx(wordcnt=1)=endblkent)]
end else beqgin
rblkent t= endblkent div (wordent = 1):
Iblkent 2= eblkcnt + 17
midword 2= endblkecnt + | = rblkent *» (wordent = 1)
end;
leftside?
rtside
‘ end
| end
end’ (* adjustlin »)

113

B J

procedure Aisplayln;

(»this proc causes one line of up to 80 chars
to be displayed on the crt screen at the line/
row poSition indicated by rowno.t)

begin (x displayln x)
if boln then
colno := lmargin + 1
else
colno 2= omargin + 17}
xyaddr(colno, rowno):

repeat ;
ch := getbufchar(+1);
1f textchar then begin
write(eh)
end
until newline or eot
end’

(x disolayIln =)

procedure displayscreen(col, nolines, row: inteqer);
(xthis proc causes up to (lastinemsgins),
usually (24=3) or 21, lines to be disolaved
on the crt screen, nolines is described in
startin. col and row fndicate the final
cursor position,*)
var
buflnent, Inent: integer;
begin (» displayscreen *)

Tnspacing 3= 13
write(clear):
bufincnt 3 07
Inent = 03

rowno = 1 ¢ msglns;
ch 2= startin(nolines);
repeat

displayln;

buflncnt 2= buflnent ¢+ 17

Incnt = Inent + 17

rowno := rowno * 1}

case Inspacing of

12
null’
if rowno < lastln then beain
1nent = lncnt + 17
rowne = rowno ¢+ 1
end?
3:
begin
ftnent ¢= Incnt ¢+ 27
rowne := rowno + 2
end

end (% case *) b
until (inecnt >= lastin = msqlng) or eot;
- if eot then
buflinent = buflincnt = 17
ff row = 1 then _
setcursor(cols =buflincnt)
else if rowno = lastin then
setcursor(col, 0)
else
setcursor(col, =buflncnt = row):} 3
if 'nspacing = 1 then
rOWNO = row + msqglns
else
| rowno :2 row * Inspacing = Inspacing + 1 ¢+ msqlns;
; xyaddr{colno, rowno)
end; (» displayscreen *)

e

procedure scrollup?

(xthis proc causes the user window to move
backwards thru the text far enouah to

move 16 lines, 3/4's of a screen, or

until bot is reached. It orovides for an
overlao, i.e. the top S lines will become
the bottom S lines, for continuitv,.*)

var
upltns: integer;

begin (» scrolluo *)
uplns = overlap = lastin + msalns = rowno’
displayscreen(imarqgin,upins,lastin=msqlins=-overiapo=1)
end’ (* scrollup »)

procedure scrolldown’

(xthis proc causes the user window to move
forward thru the text buffer far enough to
move 16 lines, 3/4's of a screen, or until

eot is reached. It provides for an overlao,
{.e. the last S lines will become the too S.?)

var
downlins: integer;

beqin (* scrolldown #)
downlins := lastin = msalns = overlap = rowno’
displayscreen(imargin, downlins, overlao = 1)

end;: (* scrolldown ¢)

116

procedure chgrowno(inc: integer)’

{*this proc causes the row numbe incremented to be
or decremented by 1. It uses the terminal's HW
scrolling feature when at the bottom In on the CRT, %)

begin (» chgrowno *)
if (inc = =1) and (rowno = 1) then
scrollup
else
case Inspacing of
12

if rowno < lastlin then
rPOWNO = rowno + inc

else begin {rownozlastin}
write(1¢$);
displayin

end;

23

if rowno < lastin then
rOwWNo 2 rowno ¢+ 2 * incC

else begin {rowno=lastin}
write(1f, Y¢);
displayln

end;

33

if rowno < lastlin « 2 then
rowno = rowno + 3 % inc

else begin {rowno=lastin=2}
write(l1f, 1¢, 1§, V1¢);
displaylin

end

end (* case *)
end’? (* chgrowno *)

Bostm A

S acem e s oatiniuiel)

117

TN R T JPREAE Tt TN
} G

[P

e TOR——Yw i =

K

procedure maocursor(inc: integer);

(*this proc duplicates the cursor movement

on the screen as movement thru the buffer

s0o that there is a one-to-one corresoondence
between the cursor char and the buffer char.*)
(2inc has the values +1 and =1.%)

beqin (* mapcursor *)
if bop or boln then beain
case inc of
negl:
beqgin {wraparound to end of orevious In}
ch = startin(=1);
if boln then
colno := Imargin + Inlength ¢+ 1
else
colno 3= omargin + Inlenath ¢+ 1
end;
posli:?
{go forward to next line}
if boln then
colno = Imargin
else
colno 2= pmargin
end; {case}
charowno(inc)
end else if bot then
oromot (19)
else if eot then
orompt (14)
else
{other format commands}
nul?

end? (» maocursor ®)

118

A W"“ o 1 s b I LRI e i WY IS AN a1 AT
GAa s —_

P

function getchar(inc? integer): char;’

(xthis func returns only displavable text
chars from the buffer. It iconores the format
commands embedded in the buffer. =x)

(* inc has the values +1 and =1 »)

const
negl
posli

u "
+
—
-,

beqin ’ {(x getchar =x)
case inc of
negl:
repeat
ch = getbufchar(=1);
if formatchar then
mapcursor(=1)
else
colno = colno = 1|
until textchar or bot;
posli:
repeat
ch :2 getbufchar(+l);
if formatchar then
mapcursor(+1l)
else
colno :3 colno + 1
unti) textchar or eot
end; (x case *)
if bot or eot then
! repeat
. ch := aetbufchar(=inc)
! until textchar;

] getchar = ch
end; (* getchar *)

orocedure titlepmfix(var pmchars: inteaer);
(*this proc chanaes the oaraaraph marqins
to conform to thesis manual specifications
for indentation.*)

begin . (x titleomfix *)
case ch of
.1':
] pmargin = 17;
02.:
pmarain = 17;
.3':
pmarain = 217
Oa':
pmargin t= 25;
'S':
pmarain = 17

end; {(case}
pmchars = rmargin = omarqgin + 1
end? (* titleomfix =)

120

g

P . Wi £ 7. ey i -

procedure orocessbuf(start, finish: inteqer)’

(xthis proc processes the buffer after text
insertion, deletion or format chanaes, e.q9.
rmarain or Imargin, Only the paraaraph(s)
involvea in text changes will be reprocessed.*)

var
Imchars, omchars, nochars, cntr? integer’
halt: boolean;

procedure onlyread(stop: char);
(xthis proc orevents orocessina of specially
formatted text such as titles, etc.*)

begin (* onlyread =)
repeat
ch := getbufchar(+l)
untit (ch = stop) or eot?
halt = true
end? (x onlyread)

121

b bt

beain
tmchars := rmargin = Imargin + 7
pmchars 2= rmarqin = pmarqgin + 1
hale = false;
ch = startin(0);
if bufindx > start then beaqin
repeat
ch 22 startin(=1)
until boo and (bufindx <= start) or bot;
if bot then
repeat
ch := getbufchar(+1)
until newline
end;
if bop then
nochars ¢= omchars
else
nochars = Imchars:
reoeat
cnte = 0;
repeat
ch = aetbufehar(+1);
if textchar or boln then begin
enter = ecntr + 12
if boln then begin
Ch :: L} 0;
bufferlbufindxl 3 ch
end o
end else if ¢ch = filloffeh then
onlyread(fillch)
else if ¢ch = titlech then beain
ch := qetbufchar(+1);
titlepmfix(pomchars);
onlyread(om)
end else if ch = tabch then
mochars = nochars = taD
until newline aor (cntr = nochars) or eot or halt:
if not (newline or halt or eot) then begin .
if ch <> ' ' then
(* backtrack to space before word %)
repeat
ch :3 qetbufchar(=1)
until eh = ' '
bufferlbufindx! := Im;
nochars 2= Imchars
end else if boo then
nochars := omchars !
else if halt then :
halt := false
until boo and (bufindx >= firish) or eot
end? (* processhuf =)

(* processhuf =)

et e e ot il el e s

122

S a0

procedure movecursor:

(sthis proc causes the cursor to move on the screen
as well as mapping the cursor movement to the
movement thru the buffer. *)

beain (* movecursor *)

if inchar = pright then
(x move forward 1 col #)
ch = getchar(+l)

else if inchar = left then
(* move backward 1 col x)
ch = getchar(=~-1)

else if inchar = up then beagin (* move uop | line *)
setcursor(colno, =t);
charowno(=1)

end else if inchar = down then begin (* move down 1 line =)
setcursor(colno, +1):
chagrowno(+1)

end else if inchar = 'U' then
(x backward 3/4's screen *)
scrollup

else if inchar = 'D' then
{(* forward 3/4's screen *)
scrolldown

else if inchar = 'b' then beain
(* go to the beginning of file x)
jmotomarker(botchar, =t);
displayscreen(imargin, 0, +1)

end else if inchar = 'e' ther bheain
(x go to the end of file *)
jmotomarker(ectchar, +1);
displayscreen(rmarain, =(2 * overlao) + 1, 2 * overlap)

end else if inchar = ¢cr then pegin
(x move to 1st col of mext line down *)
setcursor(Imarain, +1);
chgrowno(+1)

end else if inchar = 'p' then
null?

xyaddr(colB, lastin);

write(ch);

xyaddr(colno, rowno)

end; (* movecursor *)

T emhadeessed N . . ” M i |

|

e

procedure readraw;

(*this proc reads the raw file, if oresent, into

the buffer and reorganizes the buffer into the
correct structure. if no file is oresent the buffer
is set uo for the creation of a new file.,x)

procedure newbufinit?)
(*this proc initializes the buffer for the
creation of a new file %)

begin (* newbufinit =)
(*botchariformatreciom! insert area !eotchariempty®)
(*beaindx] eee tinsheg! linsend! tbuflimitx)

begindx = 17
buffer(begindx)] := botchar?
bufferlbegindx + 11 := pm;
bufindx = beqgindx ¢ 1:
insbeg := beaindx + 2;
insend := buflimit = 2
bufferfbuflimit = 11
end;?

H
= eotchar
(* newhufinit =)

procedure nrocessraw;’

(*this proc processes the raw file by counting off the
no, of chars to be in a2 line after the marain spaces
are considered and includes the oroper sSoacing consid=
erations. A processed line is oreceded by a Im or om

if it is a paragrapon. Previously set Im's are blanked*)

var
cnter, Imchars, nochars, omchars: integer:?
beain (* processraw *)

omchars = rmargin = omargin ¢+ 1°?
Imchars 2= rmargin = Imargin + 17
nochars := imchars?

bufindx s 0;

i = 03
while not eof(infile) Hdo begin
entr = i
receat
read(infile, ch);
bufindx = bufindx ¢+ 1;
it fill then
if textchar or boln then beqgin
enter = ente ¢ 13
if boln then
Ch ::]]
end else if bop then begin
nochars := pmchars?
i 2= 0
end else if c¢ch = tabch then
nochars = nochars = tab
else if ch = titlech then beqgin
bufferlbufindx] = c¢ch;
bufindx := bufindx + 1;
read(infile, ch)?
titlepmfix(pmchars)
end;
bufferfbufindxl := ¢h
until newline or (cntr = nochars) or eof(infile):
it not (newline or eof(infile)) then begin
tf ch = ' ' then begin
bufferfbufindxl = 1Im;
i 2= 0 A
end else begin {(backtrk to ' ' before word)
joe= 05
repeat
i 3§ ¢+ 1
until bufferlbufindx = j1 = ' ';
bufferibufindx = j1 = Im
end;
nochars = Imchars
end
end
endi: (* orocessraw *)

125

§
t

orocedure oldoufinit:
(xthis proec initializes the buffer after an existing
file has been read in,x)

var
bufend: inteqger;

begin) (* oldbufinit =)
(sbotchar|formatreciom!insert areal!text!eotchariemotyx)
prompt(14);
processraw’
bufend 3 bufindx;
j ¢= buflimit - 1;
i :2 bufend;

reoeat
bufferljl = bufferiil:
buftferlil 2= * *;
] it= i =13
i =) =1
until i = 27
insend = j; ¢
begindx = § - 1}
insbeg := begindx + 1|
end: (*» oldbufinit #*)
beain (* readraw *)

setdefaults;)

write(clear): {for previous reads}

fileread 2= true?

repeat
orompt(11)?
suserinpout(l);
ch = sstrinagll)

until (ch = 'y') or (ch = 'n');

it ¢h =2 'n' then begin {emoty new file)
emptybuf := trye’
newbufinit

end else begin (* monempty exjsting file %) 4
emptybuf = false; {
filename('r');
reset(infile, name);
oldbufinit;
bufindx = begindx + 1 !
displavscreen(Iimarain, 0, t)

end

end; (* readraw *»)

126]

SO

procedure writeraw;’

(*this proc writes the buffer back to storage.t)

begin (* writeraw «)
filename('w');
rewrite(outfile, name):
jmotomarker(botchar, =1);
ch :2 getbufchar(0);
write(outfile, ch);
if not eot then
repeat ,
¢ch = getbufchar(+t);
it not (ch in frubout, bm, em, nm}) then
write(outfile, ch)
until eot;

: flush(outfile)
end; (* writeraw *)

127

! R s, e S

procedure listorocessed;

{this proc orocesses the buffer and writes out
the processed text to the user~indicated file
for orinting w/ no copy saved.,)}

var
Incnt: integer?

orocedure blankline(nolines: inteqger);

(* this proc writes out a blankline of processed
text to the output file.*)

begin (~ blankline =)
for § 2= 1 to nolines do
write(outtile, cr, 1f)

end;: (* blankline %)

procedure endpage;

(xthis proc performs the end of page

processing necessary for page numbering, prooer
margins, etc.»)

begin (» endpaqge *)
repeat
blankline(1)?
tnacnt 2= Incnt + |
until lnecnt >= maxoglins = oamarging
if opageno <> 0 then beain
write(outfile, pageno: centerofpg)?
lnent = Incnt + 13
oageno = paaeno + |
end;
blankline(maxpgins = Incnt = blnoffset)
endi (x endraqge *)

procedure writetitle(indentn: inteqer);
(zethis proc writes out one line, a titlex)

begin (* writetitle =)
for § ¢2 1 to indentn do
write(outfile, ' ');
reoeat
ch t=2 getbufchar(+1);
it not formatchar then
writel(outfile, ch)
until newline;
write(outfile, cr, 1)

end? (* writetitle #)

129

ke M TR AR VP

.;?,.-‘dm*~__—d===ﬂ===I-I-II-I-q'F“

procedure processtitle’
classification as 1st order, 2nd order, etc,
according to thesis manual instructions.?®)
beqin (* processtitle *)
ch 3= qgetbufchar(+l):
case ch of

F‘ l’l:

1 beain
‘ endpage;

blankline(tmarqin + 3):

omarqin = 173

writetitle(center):

blankline(2)?

Tnent = tmargin ¢+ 6

end; i
2 |
begin i
if (Tnent = tmargin) or (Incnt = tmargin + 6) then]
Inent = Inmnent = | i

else i

blankline(1);
omarain 3 175
writetitle(lmargin);
blankline(1)?
Tnent = Incnt + 3
end:
'3
beain
pmargin 22 217}
writetitle(imargin ¢ 4)3
blankline(1l):
- thent = Inent + 2
3 end;
0“0:
heain
omargin = 257
writetitle(Imargin ¢+ 8);
blankline(1);
Tnent 2= Incnt ¢ 2
end;
'S
begin ﬂ
endpagei
blankline(tmarain ¢+ 3)7
omarain 3 17}
writetitle(center);
blankline(2)?
lnent ¢S tmargin ¢+ 6
end

end {case)
end; (2 processtitlier)

130

procedure listin;

(xthis proc writes one line of processed text
to the outout file.*) ;

begin (x tistln #) i
if ch = titlech then begin
orocesstitle’
atitie = true
end else begin
if boln then
¢or i 2= 1 to Imarain do
write(outfile, ' ')
else if boo then
for i := 1 to omarain do
write(outfile, ' ')
eljse if ch = breakch then
for i 2= 1 to Imarqin do
write(outfile, ' ')
else if ch = paejectch then
endpage;
repeat
ch := getbufchar(+l);
if not newline then
if textchar then
write(outfile, ch)
until! newline or eot’
write(outfile, cr, 1¢)
end
end; (x Yistln *)

131

% Pt . —
v ST ANy o
o o .

filename;
rewrite(outfile, Istring);
jmotomarker(botchar, =-1);
repeat

eh 2= qgetbufchar(+1)
until newline;
promnot(12):;
suserinput(3);
conyrtnum(l, pageno);

promot (15):;
tmarqgin $= tmarqin = tlnoffset:
i bmargin := bmargin ¢+ binoffset?
? pamargin := ogmargin + binoffset;
reoeat
blankline(tmargin);
i 1ncnt = tmarging
repeat
listin;
if not atitle then
case Insoacing of
1:
| Tncnt = Incnt + 1}
| 2:
' beain
blankline(1);
Inent 2= Incrt + 2
end:
3
[beain
blankline(2);
f Tnent := Incnt + 3
end
end (* case *)
else
atitle 3= false
until eot or (Tnent > maxpalns
endpage
until eot’
vause;
alisting := false
end; (x

132

beqgin (» listprocessed
E; atitle := falsge;
i Inspacina := 2
: alisting 2= true’

centerofog := (rmargin = Imarqgin) div 2 + Imarain;

= bmarqgin);

*)

listorocessed *)

" R % < i

N m———

begin (* checkmarkers =)
markersok 3 true;
case calledby of
‘A':
{Addfile)
mtestS;
.C.:
{coovy}
if begmset and endmset and newmset then begin
mtestl’
mtest?2
end else begin
mtest3;
mtestd;
mtestS
end;
m*s
{move}
if begmset and endmset and newmset then beain
mtestl;
mtest?
end else begin
-mtest3;
mtestd:
mtestS
end;
‘pte
{replace}
if begmset and endmset then
mtestl
else begin
mtest3;
mtestd
end;
's’:
{search}
if begmset and endmset then
mtegtl
else begin
mtest3;
mtestd
end;
L &
{Xtractfile)
1f begmset and endmset then
mtestl
else begin
mtest3;
mtestd
end
end {(case)

end; (* checkmarkers *)

133

E—

procedure format:

begin '
promot (3)

end’

(x format =)

(x format *)

134

e

rronsn

procedure edit?
var
exit: boolean;

orocedure cooy’

(*this proc allows the user to copov/duolicate

a body of text w/in the buffer as long as the
entire copy will fit into the buffer., The

materijal to be copied is delimited by 2 cursor
settinas. The new locn is also set w/ the cursor,
Note that the copy will oreceed the cursor locn. *)

var
inc, textlenqth, start, finish: integer;

procedure coovychar;?
{xthis proc actually performs the char
transfer in the cooytngx)
hegin (* cooychar *)
bufferlinsendl := em
buffer(endindx! = e
receat
ingsend := insend = 1
endindx := endindx = 1;
bufferfinsend]l := bufferlendindx}
until endindx = beaindx + 1;
bufferfinsend = t] := bm;
bufferfbegindx) := pm;
insend = insend - 2
end; (x copychar *)

-
»
ms

135

e i O IO N ke 2

e o~ = -

il Nl

begin (x cooy *)
checkmarkers('c');
if markersok then
if insend = insbeg > endindx = begindx thenm beain
textlength := endindx = beqgindx;
1f bufindx < newindx then
inc = +1
else if bufindx > newindx then
inc s =]
else
inc = 0;
repeat
ch 2= getbufchar(ingc)
until ch = nm;
repeat
ch := getbufchar(=1)
until not formatchar;
if endindx < insbeg then beqin
(.-1bm3-..=em=...:insend:nm:..-)
start :2 begindx:’
finish 2= insend + 1| = textlength;
cooychar
end else begin
{eeolinsendinm!...ibmi,..clem!i...)
bufindx := insend + 2;
repeat v i
ch = bufferlbufindx]; 3
bufindx := bufindx + (+1)
until ch = em;
endindx = bufindx = 1}
begindx = endindx = textlenath;
start = insend + 1 = textlength?
tfinish = endindx = textlength?
cooychar
end;?
bufindx := insheg = 1;
jmptomarker(nm, +1);
bufferlbufindxl := nm;
processbuf(start, finish) i
end else]
errormsg(19)

e PO

end;: (*x copy *) i

136

orocedure delete;

(axthis proc allows the user to delete chars in
either the right or left direction by moving the
cursor in the desired direction. an entire line
of chars is deleted if the cursor is moved up or
down, deletion in the buffer only occurs upon
user acceptance. note that format cmds w/in the
deleted area are also lost.r)

var
forwrd, backward, finished: boolean;
stop?! inteqer;

orocedure delscreen(dir: char);

(xthis proc writes blanks or blank lines to

the screen to show how the deletion wil)

appear., note no deletion occurs in the buffer.*)

begin (*» delscreen =)
{deletion only reflected on screen}
if (dir = right) and not backward then begin
forwrd := true;
write(' '):
ch := getrtchar(+1)
end else if (dir = left) and not forwrd then begin
backward = true;
write(left, ' ', left):;
ch 3= getchar(=1)
end else if (dir = uo) and not forwrd then begin
backward = true;
blankin(rowno):
setcursor(rmargin, =1);
chgrowno(=1):
if rowno = 1 then beqgin
scrollup;
for i 2= I' to overlap = 1 do
blankin{rowno + i)
end
end else if (dir = ' ') and not backward then beqin
forwrd 2= true;
blankin(rowno)?
setcursor(imargin, +1);
chgrowno(+1)
end else
errormsg(9);
xyaddr(colno, rowno)
end’ (x delscreen =)

137

procedure delprocess;
(athis proc causes the deleted text to be

removed from the buffer and processes the
remaining text as reauired.*)

begin
delend := bufindx;
if forwrd then begin
{eee! delete area | insert area ...}
{eeesidelbeqgi.coidelend!insbeal...!insend!e..}
bufindx := delbeq:;
repeat
ch := getbufchar(=-1);
if formatchar then
delbeg := delbeg - 1
until textchar;
insbeg $:= delbeg?’
processbuf(delbeqa, delend)
end else if backward then beain
{eeeidelchar! insert area !delete area ...}
f..-:delend !insbec:.-.:insend:...--.:de‘beg:-..)
bufindx := insbeg -~ 1:
repeat
ch = qgetbufchar(=1):;
i1f formatchar then
delend $¢= delend =~ |
until rtextchar;
insend := delbeg;
insbeg := delend’

orocessbuf(delend, delbeq)
end
end;:

(* delprocess *)

(x delorocess *)

138

FEa

By e AN ity

bt e

beagin

end/

xyaddr(colno, rowno):
finished = false;
forwrd = false; {also downward}
backward := false; {also uoward}
delbeg = bufindx;
repeat
read(inchar):?
if inchar in (right, left, uo,
delscreen(inchar)
else it ch = quit then
finished = tprue

(x delete %)

'} then

{no deletion occurs)

else if inchar = accept then begin
{deletion w/in buffer actually occurs}

delprocess’
finished := true
end else begin
errormsg(8);
prompt (S);
xyaddr(colno, rowno)
end
until finished?
it forwrd then
stop = delbeg {(backward}
else
stop = delend?
repeat
ch := agetbufchar(~1)

until (bufindx <= stoo) and boo or

if bot then beain
repeat
¢ch = qetbufchar(+i)
until boln or boo or eot?
if eot then
emotybuf = trye
end;
it emptybuf then
write(clear)
else

displavscreen(Imarain, =overlap.,

139

bot?

overlap + 1)
(x delete *)

e Wy O T ey e

orocedure exchange?

(*this proc allows the user to chanae both format
commands and text characters directly in the buffer., It is
primarily used for trouble=shooting.*)

beqgin (*x exchange *)
repeat
readlinchar);
if inchar <> quit then beain
buffer(bufindxl := inchar;
ch :2 qetbufchar(+1);
xyaddr(d4, lastin);
if textchar then
write(ceh)
else if bop then
write('%"')
else
write('\"')
end
until inchar s quit;’
displayscreen(Imarain, 0, +1)
end; (* exchange *)

140

procedure insert’

(2 this proc causes text to be added to the
buffer before the char inaicated by the cursor. *)

var
irs jo inspos, insquit: integer;
finished: boolean’

procedure inserterase;

(2this proc moves the cursor back to the preceding
char and blanks out the last entered char, wrap-
around occurs, in addition the cursor movement is
duplicated in the buffer,.*)

begin (* inserterase *)
it pufindx > inspos then begin
ch = bufferlbufindxl;)
{wraparound from new emoty line}
if (eh = fillch) or (ch = filloffch) then begin
fill = not ¢il);
bufindx = bufindx - 1}
insbeg := insbeg = 1
end else if not newline then begin
bufindx ¢= bufindx =~ 1}
insbeg := insbeg = 1;}
eh := bufferfbufindx];
write(left, ' ', left)
end;
it newline then beain '
{wraparound to end of orevious line)
i =13
repeat
ch 2= hufferlbufindx = i1;
iz q ¢
until newline’
tf boln then
colno :=2 i = 1 + Imargin
else if boo then

colno 22 i = 1 ¢+ omarain
else if ch = tabch then
colmo 22 i = 1 ¢ Imargin ¢+ tab’

rowno 2 rowno = 1;
bufindx 2= bufindx = 13}
xyadder(colno, rowno)
end else {same line erase)
colno 22 colnmo - |
end else begin
errormsqg(7);
orompt (2)}
xyaddr(colno, rowno)
end
end; (a2 inserterase t)

141

procedure endline(nowraoned: inteaer); _
(athis proc removes extra blanks from the end of
the orevious line, sets the Im or om, prepares
the crt screen to dispolay the next inserted char
and rotates chars to fill the stripped slots.
nowrapped is the # of chars to be written to the
new line,*)

var
lastch: char;

begin (* endline #)
{remove extra blanks at eoln if oresent)
j 3= 07

receat))
lastch = bufferlbufindx = 13

i =i+ 1

until lastch <> ' °';
insbeg = insbeg = j ¢+ 2
bufindx = bufindx = j + 27

{ set marker)}
it bop then beaqgin
colno := pmargin + 1}

bufferfbufindx} := om
end else beqgin

colno := Imargin + 1;

butferlbufindx]) = Im

end;
{ orepare crt screen }
if rowno < lastlin then begin
rowno = rowno + 13
blankin(rowno)
end else
write(1f);
xyadde(colno, rowno): !
{rotate and write wraooed chars} ;
if nowraoped > 0 then :
repeat
bufindx = bufindx + 1
it j > 2 then)
bufferlbufindx) := bufferlbufindx + 1)
write(hufferfbufindx)):
nowraspped 2 nowrapped = |
until nowrapped = 1 :
end; (* endline %) |

142

procedure butchar; B :
t*this proc adds amother char to the buffer.*) !

begin (x putchar =)
bufindx =2 bufindx + 1:
! bufferlbufindx] = ch;
' insbeg := insbeq + |
0 end; {* putchar *)

procedure insertchar’

! (*this proc adds a new char to the text buffer and
' provides automatic line wraparocund. note that the
current buffindx contains a char while ingsbeqg is
empty,*)

H,,_.,‘.,.,,_

begin (* insertchar =)
it fi11 then
if colno <= ermarqgin then
if ch = tabch then
¢olno = colno + tab
else begin
write(ech);
¢colno = colmo ¢+ 13
outchar
end
else if {colmno > rmargin) and (ch = ' ') then
endline(0)
else begin (nonblank char at eoln}
{if (colmo>rmarqgin) and (che<>' "))
putchar;
] i t= 1; {# of wraoped chars}
{backtrack to space hefore word}
repeat]
ch = bufferlbufindx = il; i
i+
until ¢ch = ' *;
{blank out wraoped chars on screen}
colno 2 colno ¢+ 1| = i
xyaddr(colno, rowno)? T
for § 83 2 to i do {
write(' '); !
{write wraoped chars on new line)
1 bufindx = bufindx = i;
endline(i);
colno 2= colno + i
end
else _
{no fitling or autowran)
putchar;
{check for full hyffer) }
if insbea = insend = | then {ful) bhuffer)
orompt (10)
end;’ (* insertchar 2)

143

! orocedure insformatcemds
{ (2thie proc adds format commands to the buffer and
f

handles special insert entries, e.q, tables.*)

; begin (* insformatcmdchar r)

if bop then
endline(0) .
else it (ch = cr) and not fill then beain
: { ignore cr and fill)
ch = Im;
endline(0)
end else if ch = filloffch then begin
outchar?
fi1l := ¢false
end else if ch = fillech then begin
outchar;
fi11 := trye

end)
end; (* insformatcmdchar *)

' procedure insprocess(action: char)?

! (**his proc orocesses the inserted text and
surroundina text as necessary. note that
emptybuf indicates the creation of a new file %)

I .
‘ begin (*x insprocess =)
if action =
action = ‘A!
i else
action = 'Q';
case action of
l‘.:
beaqin
if emptybuf then begin
imotomarker(botchar, =1);
orocessbuf{insoos, buflimit)
end else begin
insquit ¢ inghea ~ {;
orocessbuf(insoos, inshea = 1)
end;
emptvbuf = false
end;
'Q':s
beain
{no insertion occurs}
insbeg (= inspos?
bufindx = insheg - 1
end

end {case)
end’ (* insprocess *)

< AT o g ey e

beain

if emptybuf then begin
rowno (= | + msqlins;
colno := pmarqin + |
end else begin

(£

insert »)

(» blank out the end of the line »)

xyaddr(colmno, rowno);
for i t= colno to lastcol do
write(®' *):
blankin(rowno + 1)?}
(* insert before cursor *)
ch = getbufchar(=1)
end;
xyaddr(colno, rowno):
finished 1= false;
inspos := insbeqg’
reoeat
read(ch);

if newline then
insformatcmd

else if textchar then
insertchar

else if ch = erase then
inserterase

else it (ch = acceot) or (ch
fnsprocess(ch);
finished = true

end else beqin
errormsq(6);
promot (2);
xyadder(colno, rowno)

end

until finished’

if not emptybuf then begin
repeat
ch 2 qgetbufchar(=1)

quit)

until (bufindx <= insquit) or bot;
displayscreen{(Imarqgin, 0, +1)

end else
write(clear)

end;

(»

then beqgin

insert *)

145

procedure locate’

(zthis proc oerforms a pattern search thru the
file for the input pattern strina and vositions
the cursor at the "found” pattern or at the end
of the searched area,.*)

begin (* locate *)
errormsqg(2t)
end; (*» locate *)

orocedure move;
(=this proc allows the user to move text from i
one place to another in the buffer, The body
to be moved is delimited by 2 cursor settings.
The new locn is also set with the cursor.

Note the moved material will preceed the
cursor postiont)

begin (2 move *)
null
end; (x move #)

i

procedure replace’

(2this proc will utilize the locate oroc to
replace a soecified pattern w/ another one
either once or' multinle times w/in the
delimited area of text,x)

begin (2 replace »)
errormsg(21)
end; (x repolace *)

! procedure Addfile;
b (*this proc adds the user=-specified file to the
b buffer contents at the locn indicated by nm»)

var
addoos, addquit: integer;

begin (x Addfile =)
filename('A');
sermarker;
checkmarkers('A’);
if markersok then beain
addpos := bufindx;
reset(infile, name);
jmotomarker(botchar, =1);
jmotomarker(nm, +1);
read(infile, ch):?
repeat
read(infile, ch);
bufindx = bufindx + 13
bufferfbufindx]) 2= ¢h

until eof(infile) or (bufindx = insend = 1)

insbeg := bufindx + 1;

addquit := bufindx;

if not eof(infile) then
errormsg(23)

else begin
oromot(8);
repeat

: read(inchar)

until inchar in ['n', 'y'1;
if inchar = 'y' then
delmarkers
end;
processbuf (addoos, addaguit);
reoeat

eh := qetbufchar(=1)
until (bufindx <= addquit) or bot;
displavscreen(Imargin, 0, ¢1)

end _
end; (x Addfile =)

147

|
|
f

procedure Xtractfile;}
(*this proc writes the buffer contents delimited
by bm and I'm out to a filex)
beqin (x Xtractfile *)
filename(*X');
setmarker;
checkmarkers('X"');
if markersok then begin
rewrite(outfile, name):
write(outfile, botchar);
jmptomarker(botchar, =1); 4
imotomarker(bm, +1);
ch $= qetbufchar(+l);

repeat

write(outfile, ch)’

ch := getbufchar(+t)
until ch = em;
writeloutfile, eotchar);)
rewriteloutfile): {force dumo of lastl/0 block}
orompt (8);
repeat

read(inchar)

until inchar in ('n', 'y'];?
if inchar = 'y' then
deimarkers
end
end’ (x Xtractfile »)

14R

begin (x edit *)
if fileread then begin
exit := false;
orompt (1)}
repeat
xyaddr(colno, rowno):
read(inchar);
if inchar in
{crsdown,left,riaht,uo,'D','U','D','e','b"'
it not emptybuf then
movecursor
else
errormsg(2) (* text Ppot present *)
else if inchar in edcmdset then begin
case inchar of
!Al:
begin
prompt (21)7}
Addfile
end;
OCO:
begin
promot (6);
cooy
end’
‘C':
{Cursor movement}
oromot (23);
‘d':
beain
prompt (5);
delete
end;
it
hegin
prompt(2);
insert
end?
1
begin
prompt(17);
locate
end;:

149

T e » A e AT,

then

lml:

hbegin
promot(7);
move

begin
promot(18);
reolace
end;
's':
begin
prompt(16);
setmarker
end;
x*'s
beain
prompt (20):
exchanqge
end;
b L
begin
orompt (22):
Xtractfile
end ;
end; (% edit case *)
if not exit then
promot (1)
end else begin
errormsg(4);
promot (1)
end
until exit
end else
errormsg(3)

end; (* edit *)

TR

beain (** mainline of scope #*)

(xthis is the driver for the command level and thus
SCOPE, It allows the user to read in and process
the desired file; edit and format the file in the
buffer and to save the file by writing it to the
printer or to storage,*)

stop = false;
nramingfile = false;
fileread := false;
cmdset = ('r', 'w', "1, 'e', 'a', 't'):
edcmdset =
['d"'i','q','c','m','r','l','s','x',‘ﬂ','C','X');
cursormoveset := [up,down,right,left,cr,'b','e’','D','U'};
terminal; (* prompt msa in proc *)
printer;
setdefaults;
setformatcmds?
write(clear); (* clearscreen #)
receat
orompt (4);
suserinput(li);
cmdchar = cmdll];
if cmdchar in cmdset then
case cmdchar of
‘pt'e
readraw’
w':
writeraw’
10
listorocessed/’
te's
edit?
oq':
8top = true;
Y
format
end (* decode case *)
else
errormsq(l)
until stopo?
write{clear)
end.

PP e, -Gt s T
'

LIST QF REFERENCES

1. ADM=3A Qperatorsg Manyal; Lear-Siealer, Inc.;

Anaheim, California; May 1979,

2. Rilofsky, W.; Ihe CPT Edjtor NED-=[ntrodyctign
Referen Manyal N R=2176=ARPA; RAND;
Santa Monica, California; December 1977,

3. Boyer, R. S. and Moore, J. S.7 "A Fast String

Searchina Alaorithm;" Communications of the
ALM: v, 20, n. 10 b, 1762=-772; October 1977.

4, Dunn, No.; "The Office of the Future Part I;"
Comouter Decisions; o, 16=26; July 1979,

Dunn, N.; "The Office of the Future Part II:"
Computer Decisions; o. 68-«75; Augqust 1979,

N e
N
.

6. EDIT Version 7, AM0S/2 Display Text Editor
Programmer's Reference Manual Revision A Adaae,
Inc,: Boston, Massachusetts; Septemper 1972,

7. EDT, DEC Editor Reference Manua)l No, AA=5789A=-TC;
NDiaital Equioment Corporation; Mavnard,
Magsachusetts; December 1977,

8. Elite 1520 Technician Manual; Datamedia Corporation?
Pennsauken, New Jersey.

9, Flite 2500 Instruction Manual; Datamedia
Corporation; Pennsauken, New Jersey.

10. 6Graham, S. L., Haley, C. B. and Jovs, W. N,7 Berkeley
PASCAL User's Manual-=Version 1.1; University
ot California, Berkeley;} April 1979,

11, Jensen, ¥,, and Wirth, N,; PASCAL=-User Manual
and Report; Soringer-Verlaqg; New York,
New Yorks 197S.

12, Jensen, R, W, and Tonies, C. C.;7 Software
i ; Prentice=Hall, Inc.;
Enalewnod Cliffs, New Jersey: 1979,

13. Joys A4. No? An Introduction to Nisplay Editing
with Vi; University of California, Berkeley;
Aorit 1979,

152

14,

1S.

16.

17.

18,

19.

20,

21,

22,

23.

a4,

2S.

2b.

Keddy, R., Hadjioannou, M., Muntz, R., and Shemer, J.;
*"Overview of the Functiona) Features and Software
Nesiqgn for a Disolay wWord Processor;" COMPCON

Soring Digest of Papers; o. 59<-62; February

1977.

Kernighan, B, W. and Plaugher, P. J.; Software
; Addison=-Wesley Publishina Company’
p. 163=250; 1976, :

NROFF User's Manual=~=Second Edition, Version 9/11/74;
Bell Labs: Murray Hil)l, New Jersevy.

Sharma, D. K.? "Text Handling in an Automated ;
Oftfice:” Mational Telemetering Conference Paoers; .
Ppe Ud026=3 to 402:6-6; 5«7 December 1977,

Shemer, J., E. ot. al.; "Development of an Experimental
Display Word Processor for Office Applications:”
LOMPCON Soring Digest of Papers; p. 42=4d6;

February 1977,

Synders, J.; "Word=Processina Packages for CPUs:"
Computer Decisions; o. 79=R7: January 1980.

"Trends in Computing==Apolications for the 80's;"
White Paper to Management by International Data
Corp.; Fortune; p. 29=70; 19 May 1980,

Triyono: Desian Methodolooy for an "Easy=to-Use

Text Processor; M, S. Thesis? Naval
Postaraduate School; Monterey, California;j
June 1978,

UCSD (Mini=Micro Comouter) PASCAL Release Version
1,4, Jan 19787 University of California,

tem——

San Diego’s Apri! 1978,

UNIX Programmer's Manual, Sixth Edition; Rell Labs;
Myerray Hill, New Jersey; 1975,

Wilds, T.; "The Smart Way to Pick Word Processors;"”
Comouter Decisions? o. 71=74; January 1980.

Wohl, A. D.; "A Review of Office Automation:"
Datamation: p. 117-119; February 1980,

WPS=8 Word Processing System Reference Manua!l
No, AA=5267C=-TA, Versions 2.7 and 35,07 Digital
Equioment Corooration; Maynard, Magssachusetts?
December 1978,

153

e v IRAN

2.

S.

SANS A1 i

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0142
Naval Postgraduate School
Monterev, California 93940

Department Chairman, Code 0S2
Department of Computer Science
Naval Postgraduate School
Monterey, California 939490

LCDR Frank Burkhead, USN
22306 Capote Drive
Salinas, California 93908

Professor Lyle Cox, Code 052C!
Department of Comouter Science
Naval Postgraduate Schoo!
Monterey, California 93940

Captain Lisa Talmage, USMC
Office of Manpower Utilization
Building 2009

Guantico, Viraginia 22134

154

No.

Copies

2

BRI "

) q

]

" A .
4 b e e e LT

-~ DATE
FILMED

Sl 8h

DTIC

